Home
Class 12
MATHS
If secalpha and cosecalpha are the roots...

If `secalpha` and `cosecalpha` are the roots of the equation `x^2-px+q=0`, then (i)`p^2=q(q-2)` (ii)`p^2=q(q+2)` (iii)`p^2+q^2=2q` (iv) none of these

A

`p^2=q(q-2)`

B

`p^2=q(q+2)`

C

`p^2+q^2=2q`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the relationship between \( p \) and \( q \) given that \( \sec \alpha \) and \( \csc \alpha \) are the roots of the quadratic equation \( x^2 - px + q = 0 \). ### Step-by-Step Solution: 1. **Identify the Roots**: The roots of the quadratic equation are given as \( \sec \alpha \) and \( \csc \alpha \). 2. **Sum of the Roots**: According to Vieta's formulas, the sum of the roots is given by: \[ \sec \alpha + \csc \alpha = p \] 3. **Product of the Roots**: The product of the roots is given by: \[ \sec \alpha \cdot \csc \alpha = q \] 4. **Expressing Roots in Terms of Sine and Cosine**: We know: \[ \sec \alpha = \frac{1}{\cos \alpha} \quad \text{and} \quad \csc \alpha = \frac{1}{\sin \alpha} \] Therefore, we can express the sum and product of the roots as: \[ \sec \alpha + \csc \alpha = \frac{1}{\cos \alpha} + \frac{1}{\sin \alpha} = p \] \[ \sec \alpha \cdot \csc \alpha = \frac{1}{\cos \alpha \sin \alpha} = q \] 5. **Finding the Sum**: To combine the terms in the sum: \[ \sec \alpha + \csc \alpha = \frac{\sin \alpha + \cos \alpha}{\sin \alpha \cos \alpha} = p \] 6. **Finding the Product**: The product can be rewritten as: \[ \sec \alpha \cdot \csc \alpha = \frac{1}{\sin \alpha \cos \alpha} = q \] 7. **Relating \( p \) and \( q \)**: From the product, we have: \[ \sin \alpha \cos \alpha = \frac{1}{q} \] Substitute this into the expression for \( p \): \[ p = \frac{\sin \alpha + \cos \alpha}{\frac{1}{q}} = q(\sin \alpha + \cos \alpha) \] 8. **Squaring the Sum**: Now, square both sides: \[ p^2 = q^2(\sin \alpha + \cos \alpha)^2 \] Expanding the right-hand side: \[ p^2 = q^2(\sin^2 \alpha + \cos^2 \alpha + 2\sin \alpha \cos \alpha) \] Since \( \sin^2 \alpha + \cos^2 \alpha = 1 \), we have: \[ p^2 = q^2(1 + 2\sin \alpha \cos \alpha) \] Substitute \( \sin \alpha \cos \alpha = \frac{1}{q} \): \[ p^2 = q^2\left(1 + \frac{2}{q}\right) = q^2 + 2q \] 9. **Final Relation**: Rearranging gives: \[ p^2 = q(q + 2) \] ### Conclusion: Thus, the correct relation is: \[ p^2 = q(q + 2) \]

To solve the problem, we need to find the relationship between \( p \) and \( q \) given that \( \sec \alpha \) and \( \csc \alpha \) are the roots of the quadratic equation \( x^2 - px + q = 0 \). ### Step-by-Step Solution: 1. **Identify the Roots**: The roots of the quadratic equation are given as \( \sec \alpha \) and \( \csc \alpha \). 2. **Sum of the Roots**: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|17 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.14|1 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

If sec alpha and alpha are the roots of x^2-p x+q=0, then (a) p^2=q(q-2) (b) p^2=q(q+2) (c) p^2q^2=2q (d) none of these

If p and q are the roots of the equation x^2-p x+q=0 , then (a) p=1,\ q=-2 (b) p=1,\ q=0 (c) p=-2,\ q=0 (d) p=-2,\ q=1

If p and q are the roots of x^2 + px + q = 0 , then find p.

Find p, where p,q belongs to R If p and q are the roots of equation x^2-px+q=0 then p=,

If 3+4i is a root of equation x^(2)+px+q=0 where p, q in R then

If the difference of the roots of the question ,x^(2)+px+q=0"be unity, then"(p^(2)+4q^(2)) equals to :

The value of p and q(p!=0,q!=0) for which p ,q are the roots of the equation x^2+p x+q=0 are (a) p=1,q=-2 (b) p=-1,q=-2 (c) p=-1,q=2 (d) p=1,q=2

If the difference of the roots of the equation, x^2+p x+q=0 be unity, then (p^2+4q^2) equal to: (1-2q)^2 (b) (1-2q)^2 4(p-q)^2 (d) 2(p-q)^2

Let p, q in R . If 2- sqrt3 is a root of the quadratic equation, x^(2)+px+q=0, then

If alpha, beta be the roots of the equation x^2-px+q=0 then find the equation whose roots are q/(p-alpha) and q/(p-beta)

CENGAGE ENGLISH-TRIGONOMETRIC FUNCTIONS -Exercises
  1. If sec^4theta+sec^2theta=10+tan^4theta+tan^2theta", then "sin^2theta=

    Text Solution

    |

  2. If x=(2sintheta)/(1+costheta+sintheta),t h e n(1-costheta+sintheta)/(1...

    Text Solution

    |

  3. If secalpha and cosecalpha are the roots of the equation x^2-px+q=0, t...

    Text Solution

    |

  4. Which of the following is not the quadratic equation whose roots are c...

    Text Solution

    |

  5. If sinx+sin^2x=1, then find the value of cos^(12)x +3cos^(10)x + 3 cos...

    Text Solution

    |

  6. 3(sintheta-costheta)^(4)+6(sintheta+costheta)^(2)+4(sin^(6)theta+cos^(...

    Text Solution

    |

  7. If sinx+sin^2x=1 then the value of tan^8x-tan^4x-2tan^2x+1 will be equ...

    Text Solution

    |

  8. (1+tanalphatanbeta)^2+(tanalpha-tanbeta)^2=

    Text Solution

    |

  9. Let A0A1A2A3A4A5 be a regular hexagon inscribed in a circle of unit ra...

    Text Solution

    |

  10. A circle is drawn in a sectore of a larger circle of radius r, as show...

    Text Solution

    |

  11. A right triangle has perimeter of length 7 and hypotenuse of length 3....

    Text Solution

    |

  12. Given that the side length of a rhombus is the geometric mean of the ...

    Text Solution

    |

  13. Which of the following is correct?

    Text Solution

    |

  14. The equation sin^2theta=(x^2+y^2)/(2x y),x , y!=0 is possible if

    Text Solution

    |

  15. If sin^2theta=(x^2+y^2=1)/(2x) , then x must be -3 (b) -2 (c) 1 (d)...

    Text Solution

    |

  16. If s e c^2theta=(4x y)/((x+y)^2) is true if and only if (a)x+y!=0 (b)...

    Text Solution

    |

  17. If sintheta1+sintheta2+sintheta3=3," then "costheta1+costheta2+costhet...

    Text Solution

    |

  18. If sinx+siny+sinz+sinw=-4" then the value of "sin^400x+sin^300y+sin^20...

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. If 1+sinx+sin^2x+sin^3x+oo is equal to 4+2sqrt(3),0<x<pi, then x is eq...

    Text Solution

    |