Home
Class 12
MATHS
(1+tanalphatanbeta)^2+(tanalpha-tanbeta)...

`(1+tanalphatanbeta)^2+(tanalpha-tanbeta)^2=`

A

`tan^2alphatan^2beta`

B

`sec^2alphasec^2beta`

C

`tan^2alphacot^2beta`

D

`sec^2alphacos^2beta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((1 + \tan \alpha \tan \beta)^2 + (\tan \alpha - \tan \beta)^2\), we will use algebraic identities and trigonometric identities. Let's break it down step by step. ### Step 1: Expand the squares We start by expanding both squares in the expression using the identities for \((A + B)^2\) and \((A - B)^2\). \[ (1 + \tan \alpha \tan \beta)^2 = 1^2 + 2(1)(\tan \alpha \tan \beta) + (\tan \alpha \tan \beta)^2 = 1 + 2 \tan \alpha \tan \beta + \tan^2 \alpha \tan^2 \beta \] \[ (\tan \alpha - \tan \beta)^2 = \tan^2 \alpha - 2(\tan \alpha)(\tan \beta) + \tan^2 \beta \] ### Step 2: Combine the expanded expressions Now we combine the two expanded expressions: \[ (1 + \tan \alpha \tan \beta)^2 + (\tan \alpha - \tan \beta)^2 = \left(1 + 2 \tan \alpha \tan \beta + \tan^2 \alpha \tan^2 \beta\right) + \left(\tan^2 \alpha - 2 \tan \alpha \tan \beta + \tan^2 \beta\right) \] ### Step 3: Simplify the expression Now, we will combine like terms: \[ = 1 + 2 \tan \alpha \tan \beta - 2 \tan \alpha \tan \beta + \tan^2 \alpha + \tan^2 \beta + \tan^2 \alpha \tan^2 \beta \] The \(2 \tan \alpha \tan \beta\) and \(-2 \tan \alpha \tan \beta\) cancel out: \[ = 1 + \tan^2 \alpha + \tan^2 \beta + \tan^2 \alpha \tan^2 \beta \] ### Step 4: Factor the expression Now, we can factor out \(1 + \tan^2 \alpha\) and \(1 + \tan^2 \beta\): \[ = (1 + \tan^2 \alpha) + (1 + \tan^2 \beta) + \tan^2 \alpha \tan^2 \beta \] ### Step 5: Use trigonometric identities Using the identity \(1 + \tan^2 \theta = \sec^2 \theta\): \[ = \sec^2 \alpha + \sec^2 \beta \] ### Final Result Thus, the final result is: \[ \sec^2 \alpha \sec^2 \beta \]

To solve the expression \((1 + \tan \alpha \tan \beta)^2 + (\tan \alpha - \tan \beta)^2\), we will use algebraic identities and trigonometric identities. Let's break it down step by step. ### Step 1: Expand the squares We start by expanding both squares in the expression using the identities for \((A + B)^2\) and \((A - B)^2\). \[ (1 + \tan \alpha \tan \beta)^2 = 1^2 + 2(1)(\tan \alpha \tan \beta) + (\tan \alpha \tan \beta)^2 = 1 + 2 \tan \alpha \tan \beta + \tan^2 \alpha \tan^2 \beta \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|17 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.14|1 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

Prove the following identity: (1+t a nalphat a nbeta)^2+(tanalpha-t a nbeta)^2=sec^2alphasec^2beta

A tree standing on horizontal plane is leaning towards east. At two points situated at distances a and b exactly due west on it, angles of elevation of the top are respectively alpha and beta . Prove that height of the top from the ground is ((b-a).tanalpha.tanbeta)/(tanalpha-tanbeta)

By geometrical interpretation, prove that tan(alpha+beta)=(tanalpha+tanbeta)/(1-tanalphatanbeta) .

If tan(alpha-beta)=(sin2beta,)/(3-cos2beta) then (a) tanalpha=2tanbeta (b) tanbeta=2tanalpha (c) 2tanalpha=3tanbeta (d) 3tanalpha=2tanbeta

If tanalpha=(1-cosbeta)/(sinbeta),t h e n (a) tan3alpha=tan2beta (b) tan2alpha=tanbeta (c) tan2beta=tanalpha (d) none of these

From an aeroplane vertically above a straight horizontal road, the angles of depression of two consecutive mile stones on opposite sides of the aeroplane are observed to be alphaa n dbeta . Show that the height in miles of aeroplane above the road is give by (tanalphatanbeta)/(tanalpha+tanbeta)

From the top of a light house, the angles of depression of two ships on the opposite sides of its are observed to be alphaa n dbeta . If the height of the light house be h metres and the line joining the ships passes through the foot of the light house, show that the distance between the ship is h(tanalpha+tanbeta)/(tanalphat a nbeta)

Let alpha,betaa n dgamma be some angles in the first quadrant satisfying tan(alpha+beta)=(15)/8a n dcos e cgamma=(17)/8, then which of the following hold(s) good? (a) alpha+beta+gamma=pi (b) cotalpha+cotbeta+cotgamma=cotalphacotbetacotgamma (c) tanalpha+tanbeta+tangamma=tanalphatanbetatangamma (d) tanalphatanbeta+tanbetatangamma+tangammatanalpha=1

If tanalpha+tanbeta+tangamma=tanalphatanbetatangamma,then

If (tanalpha+tanbeta)/(cot alpha+cot beta)+{cos(alpha-beta)+1}^(-1)=1, then tan alpha tan beta is equal to

CENGAGE ENGLISH-TRIGONOMETRIC FUNCTIONS -Exercises
  1. 3(sintheta-costheta)^(4)+6(sintheta+costheta)^(2)+4(sin^(6)theta+cos^(...

    Text Solution

    |

  2. If sinx+sin^2x=1 then the value of tan^8x-tan^4x-2tan^2x+1 will be equ...

    Text Solution

    |

  3. (1+tanalphatanbeta)^2+(tanalpha-tanbeta)^2=

    Text Solution

    |

  4. Let A0A1A2A3A4A5 be a regular hexagon inscribed in a circle of unit ra...

    Text Solution

    |

  5. A circle is drawn in a sectore of a larger circle of radius r, as show...

    Text Solution

    |

  6. A right triangle has perimeter of length 7 and hypotenuse of length 3....

    Text Solution

    |

  7. Given that the side length of a rhombus is the geometric mean of the ...

    Text Solution

    |

  8. Which of the following is correct?

    Text Solution

    |

  9. The equation sin^2theta=(x^2+y^2)/(2x y),x , y!=0 is possible if

    Text Solution

    |

  10. If sin^2theta=(x^2+y^2=1)/(2x) , then x must be -3 (b) -2 (c) 1 (d)...

    Text Solution

    |

  11. If s e c^2theta=(4x y)/((x+y)^2) is true if and only if (a)x+y!=0 (b)...

    Text Solution

    |

  12. If sintheta1+sintheta2+sintheta3=3," then "costheta1+costheta2+costhet...

    Text Solution

    |

  13. If sinx+siny+sinz+sinw=-4" then the value of "sin^400x+sin^300y+sin^20...

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. If 1+sinx+sin^2x+sin^3x+oo is equal to 4+2sqrt(3),0<x<pi, then x is eq...

    Text Solution

    |

  16. The value of expression (2sin^2 91^0-1)(2sin^2 92^0-1)...(2sin^2 180^0...

    Text Solution

    |

  17. If sinA=sin^2B and 2cos^2A=3cos^2B then the triangle ABC is

    Text Solution

    |

  18. If sintheta+costheta=1/5and 0lethetaltpi" then "tantheta is

    Text Solution

    |

  19. If piltalphalt(3pi)/2lt" then "sqrt((1-cosalpha)/(1+cosalpha))+sqrt((1...

    Text Solution

    |

  20. If 0 < alpha < pi/ 6 then alpha(cosec alpha) is

    Text Solution

    |