Home
Class 12
MATHS
If 1+sinx+sin^2x+sin^3x+oo is equal to 4...

If `1+sinx+sin^2x+sin^3x+oo` is equal to `4+2sqrt(3),0

A

`pi/6`

B

`pi/4`

C

`pi/3or pi/6`

D

`pi/3 or (2pi)/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x \) such that the infinite series \( 1 + \sin x + \sin^2 x + \sin^3 x + \ldots \) equals \( 4 + 2\sqrt{3} \) for \( 0 < x < \pi \). ### Step-by-Step Solution: 1. **Identify the Series**: The series \( 1 + \sin x + \sin^2 x + \sin^3 x + \ldots \) is a geometric series with the first term \( a = 1 \) and the common ratio \( r = \sin x \). 2. **Sum of Infinite Geometric Series**: The sum \( S \) of an infinite geometric series can be calculated using the formula: \[ S = \frac{a}{1 - r} \] where \( |r| < 1 \). Here, \( a = 1 \) and \( r = \sin x \), so: \[ S = \frac{1}{1 - \sin x} \] 3. **Set Up the Equation**: We set the sum equal to \( 4 + 2\sqrt{3} \): \[ \frac{1}{1 - \sin x} = 4 + 2\sqrt{3} \] 4. **Cross Multiply**: To eliminate the fraction, we cross multiply: \[ 1 = (4 + 2\sqrt{3})(1 - \sin x) \] 5. **Expand the Right Side**: Distributing the right side gives: \[ 1 = (4 + 2\sqrt{3}) - (4 + 2\sqrt{3})\sin x \] 6. **Rearrange the Equation**: Rearranging the equation to isolate \( \sin x \): \[ (4 + 2\sqrt{3})\sin x = (4 + 2\sqrt{3}) - 1 \] \[ (4 + 2\sqrt{3})\sin x = 3 + 2\sqrt{3} \] 7. **Solve for \( \sin x \)**: Divide both sides by \( 4 + 2\sqrt{3} \): \[ \sin x = \frac{3 + 2\sqrt{3}}{4 + 2\sqrt{3}} \] 8. **Rationalize the Denominator**: To simplify, multiply the numerator and denominator by the conjugate of the denominator: \[ \sin x = \frac{(3 + 2\sqrt{3})(4 - 2\sqrt{3})}{(4 + 2\sqrt{3})(4 - 2\sqrt{3})} \] 9. **Calculate the Denominator**: The denominator simplifies as follows: \[ (4 + 2\sqrt{3})(4 - 2\sqrt{3}) = 16 - 12 = 4 \] 10. **Calculate the Numerator**: The numerator expands to: \[ (3)(4) + (3)(-2\sqrt{3}) + (2\sqrt{3})(4) + (2\sqrt{3})(-2\sqrt{3}) = 12 - 6\sqrt{3} + 8\sqrt{3} - 12 = 2\sqrt{3} \] 11. **Final Expression for \( \sin x \)**: \[ \sin x = \frac{2\sqrt{3}}{4} = \frac{\sqrt{3}}{2} \] 12. **Find \( x \)**: The values of \( x \) for which \( \sin x = \frac{\sqrt{3}}{2} \) in the interval \( 0 < x < \pi \) are: \[ x = \frac{\pi}{3} \] ### Conclusion: Thus, the value of \( x \) is \( \frac{\pi}{3} \).

To solve the problem, we need to find the value of \( x \) such that the infinite series \( 1 + \sin x + \sin^2 x + \sin^3 x + \ldots \) equals \( 4 + 2\sqrt{3} \) for \( 0 < x < \pi \). ### Step-by-Step Solution: 1. **Identify the Series**: The series \( 1 + \sin x + \sin^2 x + \sin^3 x + \ldots \) is a geometric series with the first term \( a = 1 \) and the common ratio \( r = \sin x \). 2. **Sum of Infinite Geometric Series**: The sum \( S \) of an infinite geometric series can be calculated using the formula: \[ ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|17 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.14|1 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

int(2sinx)/(3+sin2x)dx is equal to

Statement -1:If e^{("sin"^(2)x + "sin"^(4)x + "sin"^(6)x +…)"log"_(e)2] satisfie the equation x^(2)-9x +8=0 , "then " (cosx)/(cosx + sinx) = (sqrt(3)-1)/(2), 0 lt x lt (pi)/(2) . Statement-2: The sum sin^(2) x + sin^(4)x + sin^(6) x + .... oo is equal to tan^(2)x

If sin^-1(1/3)+sin^-1 (2/3)= sin^-1 x then x is equal to (A) (4+sqrt(5)/9 (B) (4sqrt(2)+sqrt(5)/9 (C) (sqrt(3)+1)/6 (D) 1

If 1+sintheta+sin^2theta+sin^3theta+..to oo=4+2sqrt3 0< theta < pi , theta!=pi/2 then

If (4cos^(2)x -2 sinx -3) sin x = 0 , then x is equal to (n in Z)

("lim")_(xvecoo)(sin^4x-sin^2x+1)/(cos^4x-cos^2x+1) is equal to (a) 0 (b) 1 (c) 1/3 (d) 1/2

The integral int_(0)^(pi)sqrt(1+4"sin"^(2)x/2-4"sin"x/2)dx is equals to (a) pi-4 (b) (2pi)/3-4-sqrt(3) (c) (2pi)/3-4-sqrt(3) (d) 4sqrt(3)-4-(pi)/3

int_(0)^(pi//2)sinx sin2x sin3x sin 4x dx=

The number of values of x in (0, pi) satisfying the equation (sqrt(3) "sin" x + "cos" x) ^(sqrt(sqrt(3)"sin" 2x -"cos" 2x+ 2)) = 4 , is

The value of x in (0,pi/2) satisfying the equation, (sqrt3-1)/sin x+ (sqrt3+1)/cosx=4sqrt2 is -

CENGAGE ENGLISH-TRIGONOMETRIC FUNCTIONS -Exercises
  1. If sinx+siny+sinz+sinw=-4" then the value of "sin^400x+sin^300y+sin^20...

    Text Solution

    |

  2. about to only mathematics

    Text Solution

    |

  3. If 1+sinx+sin^2x+sin^3x+oo is equal to 4+2sqrt(3),0<x<pi, then x is eq...

    Text Solution

    |

  4. The value of expression (2sin^2 91^0-1)(2sin^2 92^0-1)...(2sin^2 180^0...

    Text Solution

    |

  5. If sinA=sin^2B and 2cos^2A=3cos^2B then the triangle ABC is

    Text Solution

    |

  6. If sintheta+costheta=1/5and 0lethetaltpi" then "tantheta is

    Text Solution

    |

  7. If piltalphalt(3pi)/2lt" then "sqrt((1-cosalpha)/(1+cosalpha))+sqrt((1...

    Text Solution

    |

  8. If 0 < alpha < pi/ 6 then alpha(cosec alpha) is

    Text Solution

    |

  9. The least value of 2sin^2theta+3cos^2theta is 1 (b) 2 (c) 3 (d) ...

    Text Solution

    |

  10. The greatest value of sin^4theta+cos^4theta is

    Text Solution

    |

  11. If f(x)=sin^6x+cos^6x , then range of f(x) is [1/4,1] (b) [1/4,3/4] ...

    Text Solution

    |

  12. The minimum value of atan^2x+bcot^2x equals the maximum value of asin^...

    Text Solution

    |

  13. Range of f(theta)=cos^2theta(cos^2theta+1)+2sin^2theta is [3/4,1] (b)...

    Text Solution

    |

  14. If 0<theta<pi, then minimum value of 3sintheta+cos e c^3theta is 4 (b)...

    Text Solution

    |

  15. If thetaigt0" for "1lethetalenandtheta1+theta2+theta3+...+thetan=pithe...

    Text Solution

    |

  16. The set of values of lambda in R such that sin^2theta+costheta=lambda...

    Text Solution

    |

  17. Let A=sin^8theta+cos^14theta, " then "A("max") is

    Text Solution

    |

  18. Minimum value of y=256sin^2x+324cos e c^2xAAx in R is 432 (b) 504 ...

    Text Solution

    |

  19. If a and b are positive quantities, (a gt b) find minimum positive val...

    Text Solution

    |

  20. If y=(sinx+cosecx)^2+(cosx+secx)^2 then the minimum value of y,AAx in ...

    Text Solution

    |