Home
Class 12
MATHS
If sinA=sin^2B and 2cos^2A=3cos^2B then ...

If `sinA=sin^2B and 2cos^2A=3cos^2B` then the triangle ABC is

A

right angled

B

obtuse angled

C

ospsceles

D

equilateral

Text Solution

AI Generated Solution

The correct Answer is:
To determine the type of triangle ABC given the conditions \( \sin A = \sin^2 B \) and \( 2 \cos^2 A = 3 \cos^2 B \), we can follow these steps: ### Step 1: Rewrite the second equation We start with the equation: \[ 2 \cos^2 A = 3 \cos^2 B \] Using the identity \( \cos^2 \theta = 1 - \sin^2 \theta \), we can rewrite this as: \[ 2(1 - \sin^2 A) = 3(1 - \sin^2 B) \] ### Step 2: Expand and rearrange Expanding both sides gives: \[ 2 - 2 \sin^2 A = 3 - 3 \sin^2 B \] Rearranging this, we get: \[ 2 - 3 = 2 \sin^2 A - 3 \sin^2 B \] which simplifies to: \[ -1 = 2 \sin^2 A - 3 \sin^2 B \] or \[ 2 \sin^2 A - 3 \sin^2 B + 1 = 0 \] ### Step 3: Substitute \( \sin^2 B \) From the first equation, we know \( \sin A = \sin^2 B \). Therefore, we can express \( \sin^2 B \) in terms of \( \sin A \): \[ \sin^2 B = \sin A \] Substituting this into our equation gives: \[ 2 \sin^2 A - 3 \sin A + 1 = 0 \] ### Step 4: Solve the quadratic equation Now we will solve the quadratic equation: \[ 2 \sin^2 A - 3 \sin A + 1 = 0 \] Using the quadratic formula \( \sin A = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): - Here, \( a = 2 \), \( b = -3 \), and \( c = 1 \). - The discriminant is: \[ b^2 - 4ac = (-3)^2 - 4 \cdot 2 \cdot 1 = 9 - 8 = 1 \] Thus, we have: \[ \sin A = \frac{3 \pm 1}{4} \] Calculating the two possible values: 1. \( \sin A = \frac{4}{4} = 1 \) (which gives \( A = 90^\circ \)) 2. \( \sin A = \frac{2}{4} = \frac{1}{2} \) (which gives \( A = 30^\circ \)) ### Step 5: Determine the corresponding angles 1. If \( A = 90^\circ \), then \( \sin A = 1 \) implies \( \sin^2 B = 1 \) which means \( B = 90^\circ \). This case is not possible in a triangle. 2. If \( A = 30^\circ \), then \( \sin^2 B = \frac{1}{2} \) implies \( B = 45^\circ \). ### Step 6: Find angle C Using the triangle angle sum property: \[ C = 180^\circ - A - B = 180^\circ - 30^\circ - 45^\circ = 105^\circ \] ### Conclusion: Type of triangle Since one angle \( C = 105^\circ \) is greater than \( 90^\circ \), triangle ABC is an **obtuse triangle**.

To determine the type of triangle ABC given the conditions \( \sin A = \sin^2 B \) and \( 2 \cos^2 A = 3 \cos^2 B \), we can follow these steps: ### Step 1: Rewrite the second equation We start with the equation: \[ 2 \cos^2 A = 3 \cos^2 B \] Using the identity \( \cos^2 \theta = 1 - \sin^2 \theta \), we can rewrite this as: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|17 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.14|1 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

If sinA=sin^2Ba n d2cos^2A=3cos^2B then the triangle A B C is right angled (b) obtuse angled (c)isosceles (d) equilateral

If cos^(2)A+cos^(2)B+cos^(2)C=1 , then triangle ABC is

In DeltaABC , if sin A + sin B + sin C= 1 + sqrt2 and cos A+cos B+cosC =sqrt2 then the triangle is

In triangle ABC if 2sin^(2)C=2+cos2A+cos2B , then prove that triangle is right angled.

In sinA=sinB and cos A=cos B , then prove that sin((A-B)/2)=0

In a triangle ABC, a^2cos^2A=b^2+c^2 then triangle is

If in a Delta A B C ,cos^2A+cos^2B+cos^2C=1, prove that the triangle is right angled.

In a triangle ! ABC, a^2cos^2A=b^2+c^2 then

Let a,b,c be the sides of a triangle ABC, a=2c,cos(A-C)+cos B=1. then the value of C is

Statement I: If in a triangle ABC, sin ^(2) A+sin ^(2)B+sin ^(2)C=2, then one of the angles must be 90^(@). Statement II: In any triangle ABC cos 2A+ cos 2B+cos 2C=-1-4 cos A cos B cos C

CENGAGE ENGLISH-TRIGONOMETRIC FUNCTIONS -Exercises
  1. If 1+sinx+sin^2x+sin^3x+oo is equal to 4+2sqrt(3),0<x<pi, then x is eq...

    Text Solution

    |

  2. The value of expression (2sin^2 91^0-1)(2sin^2 92^0-1)...(2sin^2 180^0...

    Text Solution

    |

  3. If sinA=sin^2B and 2cos^2A=3cos^2B then the triangle ABC is

    Text Solution

    |

  4. If sintheta+costheta=1/5and 0lethetaltpi" then "tantheta is

    Text Solution

    |

  5. If piltalphalt(3pi)/2lt" then "sqrt((1-cosalpha)/(1+cosalpha))+sqrt((1...

    Text Solution

    |

  6. If 0 < alpha < pi/ 6 then alpha(cosec alpha) is

    Text Solution

    |

  7. The least value of 2sin^2theta+3cos^2theta is 1 (b) 2 (c) 3 (d) ...

    Text Solution

    |

  8. The greatest value of sin^4theta+cos^4theta is

    Text Solution

    |

  9. If f(x)=sin^6x+cos^6x , then range of f(x) is [1/4,1] (b) [1/4,3/4] ...

    Text Solution

    |

  10. The minimum value of atan^2x+bcot^2x equals the maximum value of asin^...

    Text Solution

    |

  11. Range of f(theta)=cos^2theta(cos^2theta+1)+2sin^2theta is [3/4,1] (b)...

    Text Solution

    |

  12. If 0<theta<pi, then minimum value of 3sintheta+cos e c^3theta is 4 (b)...

    Text Solution

    |

  13. If thetaigt0" for "1lethetalenandtheta1+theta2+theta3+...+thetan=pithe...

    Text Solution

    |

  14. The set of values of lambda in R such that sin^2theta+costheta=lambda...

    Text Solution

    |

  15. Let A=sin^8theta+cos^14theta, " then "A("max") is

    Text Solution

    |

  16. Minimum value of y=256sin^2x+324cos e c^2xAAx in R is 432 (b) 504 ...

    Text Solution

    |

  17. If a and b are positive quantities, (a gt b) find minimum positive val...

    Text Solution

    |

  18. If y=(sinx+cosecx)^2+(cosx+secx)^2 then the minimum value of y,AAx in ...

    Text Solution

    |

  19. The variable x satisfying the equation |sinxcosx|+sqrt(2+tan^2+cot^2x)...

    Text Solution

    |

  20. If the equation cot^4x-2cos e c^2x+a^2=0 has at least one solution, th...

    Text Solution

    |