Home
Class 12
MATHS
If piltalphalt(3pi)/2lt" then "sqrt((1-c...

If `piltalphalt(3pi)/2lt" then "sqrt((1-cosalpha)/(1+cosalpha))+sqrt((1+cosalpha)/(1-cosalpha))` is equal to

A

`2/sinalpha`

B

`-2/sinalpha`

C

`1/sinalpha`

D

`-1/sinalpha`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression \(\sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} + \sqrt{\frac{1 + \cos \alpha}{1 - \cos \alpha}}\) under the condition that \(\alpha\) lies between \(\pi\) and \(\frac{3\pi}{2}\), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} + \sqrt{\frac{1 + \cos \alpha}{1 - \cos \alpha}} \] ### Step 2: Find a common denominator To combine the two square root terms, we can find a common denominator: \[ \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} + \sqrt{\frac{1 + \cos \alpha}{1 - \cos \alpha}} = \frac{\sqrt{(1 - \cos \alpha)^2} + \sqrt{(1 + \cos \alpha)^2}}{\sqrt{(1 + \cos \alpha)(1 - \cos \alpha)}} \] ### Step 3: Simplify the numerator The numerator simplifies to: \[ \sqrt{(1 - \cos \alpha)^2} + \sqrt{(1 + \cos \alpha)^2} = |1 - \cos \alpha| + |1 + \cos \alpha| \] Since \(\alpha\) is in the third quadrant, \(\cos \alpha\) is negative. Thus, \(1 - \cos \alpha\) is positive and \(1 + \cos \alpha\) is negative. Therefore: \[ |1 - \cos \alpha| = 1 - \cos \alpha \quad \text{and} \quad |1 + \cos \alpha| = -(1 + \cos \alpha) \] So, the numerator becomes: \[ (1 - \cos \alpha) - (1 + \cos \alpha) = -2\cos \alpha \] ### Step 4: Simplify the denominator The denominator simplifies as follows: \[ \sqrt{(1 + \cos \alpha)(1 - \cos \alpha)} = \sqrt{1 - \cos^2 \alpha} = \sqrt{\sin^2 \alpha} = |\sin \alpha| \] Since \(\alpha\) is in the third quadrant, \(\sin \alpha\) is negative, so: \[ |\sin \alpha| = -\sin \alpha \] ### Step 5: Combine the results Now we can combine the results from the numerator and denominator: \[ \frac{-2\cos \alpha}{-\sin \alpha} = \frac{2\cos \alpha}{\sin \alpha} = 2 \cot \alpha \] ### Final Result Thus, the expression simplifies to: \[ \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} + \sqrt{\frac{1 + \cos \alpha}{1 - \cos \alpha}} = 2 \cot \alpha \]

To solve the given expression \(\sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} + \sqrt{\frac{1 + \cos \alpha}{1 - \cos \alpha}}\) under the condition that \(\alpha\) lies between \(\pi\) and \(\frac{3\pi}{2}\), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} + \sqrt{\frac{1 + \cos \alpha}{1 - \cos \alpha}} \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|17 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.14|1 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

If π<α<3π2 then sqrt((1-cosalpha)/(1+cosalpha))+sqrt((1+cosalpha)/(1-cosalpha)) is equal to (a) 2/(sinalpha) (b) -2/(sinalpha) (c) 1/(sinalpha) (d) -1/(sinalpha)

Givent that pi/2 lt alphaltpi then the expression sqrt((1-sinalpha)/(1+sinalpha))+sqrt((1+sinalpha)/(1-sinalpha)) (A) 1/(cosalpha) (B) - 2/(cosalpha) (C) 2/(cosalpha) (D) does not exist

int_(0)^(alpha)(1)/(cosx+cosalpha)dx is equal to

int(cosalpha)/(a^2+sin^2alpha)d alpha is equal to

If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alpha))

If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alpha))

Prove that (sinalpha)/(1+cosalpha)+(1+cosalpha)/(sin alpha)=2"cosec "alpha .

If (2sinalpha)/(1+cosalpha +sinalpha)=y , then prove that (1-cosalpha+sinalpha )/(1+sinalpha) is also equal to y.

The value of int sqrt((1-cosx)/(cosalpha-cosx)) dx where 0ltalphaltxltpi is equal to:

if cot^(-1)[sqrt(cosalpha)]-tan^(-1)[sqrt(cosalpha)]=x then sinx is equal to

CENGAGE ENGLISH-TRIGONOMETRIC FUNCTIONS -Exercises
  1. If sinA=sin^2B and 2cos^2A=3cos^2B then the triangle ABC is

    Text Solution

    |

  2. If sintheta+costheta=1/5and 0lethetaltpi" then "tantheta is

    Text Solution

    |

  3. If piltalphalt(3pi)/2lt" then "sqrt((1-cosalpha)/(1+cosalpha))+sqrt((1...

    Text Solution

    |

  4. If 0 < alpha < pi/ 6 then alpha(cosec alpha) is

    Text Solution

    |

  5. The least value of 2sin^2theta+3cos^2theta is 1 (b) 2 (c) 3 (d) ...

    Text Solution

    |

  6. The greatest value of sin^4theta+cos^4theta is

    Text Solution

    |

  7. If f(x)=sin^6x+cos^6x , then range of f(x) is [1/4,1] (b) [1/4,3/4] ...

    Text Solution

    |

  8. The minimum value of atan^2x+bcot^2x equals the maximum value of asin^...

    Text Solution

    |

  9. Range of f(theta)=cos^2theta(cos^2theta+1)+2sin^2theta is [3/4,1] (b)...

    Text Solution

    |

  10. If 0<theta<pi, then minimum value of 3sintheta+cos e c^3theta is 4 (b)...

    Text Solution

    |

  11. If thetaigt0" for "1lethetalenandtheta1+theta2+theta3+...+thetan=pithe...

    Text Solution

    |

  12. The set of values of lambda in R such that sin^2theta+costheta=lambda...

    Text Solution

    |

  13. Let A=sin^8theta+cos^14theta, " then "A("max") is

    Text Solution

    |

  14. Minimum value of y=256sin^2x+324cos e c^2xAAx in R is 432 (b) 504 ...

    Text Solution

    |

  15. If a and b are positive quantities, (a gt b) find minimum positive val...

    Text Solution

    |

  16. If y=(sinx+cosecx)^2+(cosx+secx)^2 then the minimum value of y,AAx in ...

    Text Solution

    |

  17. The variable x satisfying the equation |sinxcosx|+sqrt(2+tan^2+cot^2x)...

    Text Solution

    |

  18. If the equation cot^4x-2cos e c^2x+a^2=0 has at least one solution, th...

    Text Solution

    |

  19. If cos^2x-(c-1)cosx+2cgeq6 for every x in R , then the true set of va...

    Text Solution

    |

  20. If the inequality sin^2x+acosx+a^2>1+cosx holds for any x in R , then...

    Text Solution

    |