Home
Class 12
MATHS
If f(x)=sin^6x+cos^6x , then range of f(...

If `f(x)=sin^6x+cos^6x ,` then range of `f(x)` is `[1/4,1]` (b) `[1/4,3/4]` (c) `[3/4,1]` (d) none of these

A

`[1/4,1]`

B

`[1/4,3/4]`

C

`[3/4,1]`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \sin^6 x + \cos^6 x \), we can follow these steps: ### Step 1: Rewrite the Function We can express \( f(x) \) in a different form using the identity for cubes: \[ f(x) = \sin^6 x + \cos^6 x = (\sin^2 x)^3 + (\cos^2 x)^3 \] Let \( a = \sin^2 x \) and \( b = \cos^2 x \). Then, we have \( a + b = 1 \). ### Step 2: Use the Sum of Cubes Formula Using the formula for the sum of cubes: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] Substituting \( a + b = 1 \): \[ f(x) = 1(a^2 - ab + b^2) = a^2 - ab + b^2 \] ### Step 3: Express \( a^2 + b^2 \) We can express \( a^2 + b^2 \) in terms of \( a + b \): \[ a^2 + b^2 = (a + b)^2 - 2ab = 1 - 2ab \] So, we can rewrite \( f(x) \): \[ f(x) = (1 - 2ab) - ab = 1 - 3ab \] ### Step 4: Find the Range of \( ab \) Since \( a = \sin^2 x \) and \( b = \cos^2 x \), we know: \[ ab = \sin^2 x \cos^2 x = \frac{1}{4} \sin^2(2x) \] The maximum value of \( \sin^2(2x) \) is 1, so: \[ \text{Maximum of } ab = \frac{1}{4} \] The minimum value of \( ab \) is 0 (when either \( \sin^2 x = 0 \) or \( \cos^2 x = 0 \)). ### Step 5: Determine the Range of \( f(x) \) Now substituting the bounds of \( ab \) into \( f(x) \): - When \( ab = 0 \): \[ f(x) = 1 - 3(0) = 1 \] - When \( ab = \frac{1}{4} \): \[ f(x) = 1 - 3\left(\frac{1}{4}\right) = 1 - \frac{3}{4} = \frac{1}{4} \] Thus, the range of \( f(x) \) is: \[ \left[\frac{1}{4}, 1\right] \] ### Conclusion The correct option is: \[ \text{(a) } \left[\frac{1}{4}, 1\right] \]

To find the range of the function \( f(x) = \sin^6 x + \cos^6 x \), we can follow these steps: ### Step 1: Rewrite the Function We can express \( f(x) \) in a different form using the identity for cubes: \[ f(x) = \sin^6 x + \cos^6 x = (\sin^2 x)^3 + (\cos^2 x)^3 \] Let \( a = \sin^2 x \) and \( b = \cos^2 x \). Then, we have \( a + b = 1 \). ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|17 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.14|1 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

The function f: R-R is defined by f(x)=cos^2x+sin^4xforx in Rdot Then the range of f(x) is (3/4,1] (b) [3/4,1) (c) [3/4,1] (d) (3/4,1)

The function f: R ⇒ R is defined by f(x)=cos^2x+sin^4x , r a n g e o f f(x)= (a) [3//4,1) (b) (3//4,1] (c) [3//4,1] (d) ( 3//4,1)

Range of f(x) =sin^20x+cos^48x is (A) [0,1] (B) (0,1] (C) (0,oo) (D) none of these

Range of f(x)=sin^(-1)x+tan^(-1)x+sec^(-1)x is (a) (pi/4,(3pi)/4) (b) [pi/4,(3pi)/4] (c) {pi/4,(3pi)/4} (d) none of these

The minimum value of f(x)=x^4-x^2-2x+6 is (a) 6 (b) 4 (c) 8 (d) none of these

If f(x)=cos^(-1)((2x^2+1)/(x^2+1)), then rang of f(x) is [0,pi] (2) (0,pi/4] (0,pi/3] (4) [0,pi/2)

If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal to (a)0 (b) 1/(14) (c) -1/4 (d) None of these

The range of f(x)=(x+1)(x+2)(x+3)(x+4)+5 for x in [-6,6] is [4, 5045] (b) [0, 5045] [-20 , 5045] (d) none of these

If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal to 0 (b) -1/(14) (c) -1/4 (d) None of these

The maximum value of f(x)=x/(1+4x+x^2) is -1/4 (b) -1/3 (c) 1/6 (d) 1/6

CENGAGE ENGLISH-TRIGONOMETRIC FUNCTIONS -Exercises
  1. The least value of 2sin^2theta+3cos^2theta is 1 (b) 2 (c) 3 (d) ...

    Text Solution

    |

  2. The greatest value of sin^4theta+cos^4theta is

    Text Solution

    |

  3. If f(x)=sin^6x+cos^6x , then range of f(x) is [1/4,1] (b) [1/4,3/4] ...

    Text Solution

    |

  4. The minimum value of atan^2x+bcot^2x equals the maximum value of asin^...

    Text Solution

    |

  5. Range of f(theta)=cos^2theta(cos^2theta+1)+2sin^2theta is [3/4,1] (b)...

    Text Solution

    |

  6. If 0<theta<pi, then minimum value of 3sintheta+cos e c^3theta is 4 (b)...

    Text Solution

    |

  7. If thetaigt0" for "1lethetalenandtheta1+theta2+theta3+...+thetan=pithe...

    Text Solution

    |

  8. The set of values of lambda in R such that sin^2theta+costheta=lambda...

    Text Solution

    |

  9. Let A=sin^8theta+cos^14theta, " then "A("max") is

    Text Solution

    |

  10. Minimum value of y=256sin^2x+324cos e c^2xAAx in R is 432 (b) 504 ...

    Text Solution

    |

  11. If a and b are positive quantities, (a gt b) find minimum positive val...

    Text Solution

    |

  12. If y=(sinx+cosecx)^2+(cosx+secx)^2 then the minimum value of y,AAx in ...

    Text Solution

    |

  13. The variable x satisfying the equation |sinxcosx|+sqrt(2+tan^2+cot^2x)...

    Text Solution

    |

  14. If the equation cot^4x-2cos e c^2x+a^2=0 has at least one solution, th...

    Text Solution

    |

  15. If cos^2x-(c-1)cosx+2cgeq6 for every x in R , then the true set of va...

    Text Solution

    |

  16. If the inequality sin^2x+acosx+a^2>1+cosx holds for any x in R , then...

    Text Solution

    |

  17. If (3pi)/4 lt alpha lt pi, then sqrt(2cotalpha+1/(sin^2alpha)) is equ...

    Text Solution

    |

  18. The value of sectheta/sqrt(1+tan^2theta)+(cosectheta)/(sqrt(1+cot^2th...

    Text Solution

    |

  19. The minimum value of the function f(x)=sinx/(sqrt(1-cos^2x))+cosx/sqrt...

    Text Solution

    |

  20. If abs(cos theta{sin theta+sqrt(sin^2theta+sin^2alpha)})lek, then the ...

    Text Solution

    |