Home
Class 12
MATHS
The set of values of lambda in R such t...

The set of values of `lambda in R` such that `sin^2theta+costheta=lambdacos^2theta` holds for some `theta,` is (a) `(-oo,1]` (b) (`-oo,-1]` (c) `varphi` (d) `[-1,oo` )

A

`(-oo,1]`

B

`(-oo,-1]`

C

`phi`

D

`[-1,oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^2 \theta + \cos \theta = \lambda \cos^2 \theta \) for some \( \theta \), we can follow these steps: ### Step 1: Rewrite the Equation We start with the equation: \[ \sin^2 \theta + \cos \theta = \lambda \cos^2 \theta \] Using the identity \( \sin^2 \theta = 1 - \cos^2 \theta \), we can rewrite the equation as: \[ 1 - \cos^2 \theta + \cos \theta = \lambda \cos^2 \theta \] ### Step 2: Rearrange the Equation Rearranging gives us: \[ 1 + \cos \theta = \lambda \cos^2 \theta + \cos^2 \theta \] This simplifies to: \[ 1 + \cos \theta = (\lambda + 1) \cos^2 \theta \] ### Step 3: Form a Quadratic Equation Rearranging further, we get: \[ (\lambda + 1) \cos^2 \theta - \cos \theta - 1 = 0 \] This is a quadratic equation in terms of \( \cos \theta \). ### Step 4: Apply the Quadratic Formula Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = \lambda + 1 \), \( b = -1 \), and \( c = -1 \), we find: \[ \cos \theta = \frac{1 \pm \sqrt{(-1)^2 - 4(\lambda + 1)(-1)}}{2(\lambda + 1)} \] This simplifies to: \[ \cos \theta = \frac{1 \pm \sqrt{1 + 4(\lambda + 1)}}{2(\lambda + 1)} \] \[ \cos \theta = \frac{1 \pm \sqrt{4\lambda + 5}}{2(\lambda + 1)} \] ### Step 5: Determine Conditions for Real Solutions For \( \cos \theta \) to have real solutions, the discriminant must be non-negative: \[ 1 + 4(\lambda + 1) \geq 0 \] This simplifies to: \[ 4\lambda + 5 \geq 0 \implies \lambda \geq -\frac{5}{4} \] ### Step 6: Analyze the Range of \( \cos \theta \) Since \( \cos \theta \) must be in the range \([-1, 1]\), we analyze the two cases from the quadratic formula: 1. **For the positive root**: \[ \frac{1 + \sqrt{4\lambda + 5}}{2(\lambda + 1)} \leq 1 \] This leads to: \[ 1 + \sqrt{4\lambda + 5} \leq 2(\lambda + 1) \] Simplifying gives: \[ \sqrt{4\lambda + 5} \leq 2\lambda + 1 \] Squaring both sides results in: \[ 4\lambda + 5 \leq 4\lambda^2 + 4\lambda + 1 \] Which simplifies to: \[ 4\lambda^2 - 4 \geq 0 \implies \lambda^2 - 1 \geq 0 \] Thus, \( \lambda \leq -1 \) or \( \lambda \geq 1 \). 2. **For the negative root**: \[ \frac{1 - \sqrt{4\lambda + 5}}{2(\lambda + 1)} \geq -1 \] This leads to: \[ 1 - \sqrt{4\lambda + 5} \geq -2(\lambda + 1) \] Simplifying gives: \[ 1 + 2\lambda + 2 \geq \sqrt{4\lambda + 5} \] Squaring both sides results in: \[ (3 + 2\lambda)^2 \geq 4\lambda + 5 \] This leads to a more complex inequality which we can analyze further. ### Final Step: Combine Results From the analysis, we find that the values of \( \lambda \) must satisfy both conditions. The final solution is: \[ \lambda \in (-\infty, -1] \cup [1, \infty) \] ### Conclusion Thus, the set of values of \( \lambda \) in \( \mathbb{R} \) such that the equation holds for some \( \theta \) is: \[ \boxed{(-\infty, -1] \cup [1, \infty)} \]

To solve the equation \( \sin^2 \theta + \cos \theta = \lambda \cos^2 \theta \) for some \( \theta \), we can follow these steps: ### Step 1: Rewrite the Equation We start with the equation: \[ \sin^2 \theta + \cos \theta = \lambda \cos^2 \theta \] Using the identity \( \sin^2 \theta = 1 - \cos^2 \theta \), we can rewrite the equation as: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|17 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.14|1 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

The set of values of lambda in R such that sin^2theta+costheta=lambdacos^2theta holds for some theta, is (-oo,1] (b) ( -oo,-1] varphi (d) [-1,oo )

The set of values of lambda in R such that tan^2 theta + sec theta = lambda holds for some theta is

If 3costheta=1 , find the value of (6sin^2theta+tan^2theta)/(4costheta)

Find the sum of the series 1+cos^2theta+cos^2thetacos2theta+cos^3 theta cos3theta+… to oo

If sintheta+costheta=1 , then the value of sin2theta is

Find the sum sintheta+x sin 2theta+x^2sin 3theta+… to oo

If sin^(6)theta+cos^(6) theta-1= lambda sin^(2) theta cos^(2) theta , find the value of lambda .

The value of int(1+sin2theta)/(sintheta-costheta)d""theta is equal to

Prove that: sin theta- 1/2 sin 2 theta+1/3 sin 3theta-…to oo = theta/2

Prove: (1+costheta-sin^2theta)/(sintheta(1+costheta))= cottheta

CENGAGE ENGLISH-TRIGONOMETRIC FUNCTIONS -Exercises
  1. If 0<theta<pi, then minimum value of 3sintheta+cos e c^3theta is 4 (b)...

    Text Solution

    |

  2. If thetaigt0" for "1lethetalenandtheta1+theta2+theta3+...+thetan=pithe...

    Text Solution

    |

  3. The set of values of lambda in R such that sin^2theta+costheta=lambda...

    Text Solution

    |

  4. Let A=sin^8theta+cos^14theta, " then "A("max") is

    Text Solution

    |

  5. Minimum value of y=256sin^2x+324cos e c^2xAAx in R is 432 (b) 504 ...

    Text Solution

    |

  6. If a and b are positive quantities, (a gt b) find minimum positive val...

    Text Solution

    |

  7. If y=(sinx+cosecx)^2+(cosx+secx)^2 then the minimum value of y,AAx in ...

    Text Solution

    |

  8. The variable x satisfying the equation |sinxcosx|+sqrt(2+tan^2+cot^2x)...

    Text Solution

    |

  9. If the equation cot^4x-2cos e c^2x+a^2=0 has at least one solution, th...

    Text Solution

    |

  10. If cos^2x-(c-1)cosx+2cgeq6 for every x in R , then the true set of va...

    Text Solution

    |

  11. If the inequality sin^2x+acosx+a^2>1+cosx holds for any x in R , then...

    Text Solution

    |

  12. If (3pi)/4 lt alpha lt pi, then sqrt(2cotalpha+1/(sin^2alpha)) is equ...

    Text Solution

    |

  13. The value of sectheta/sqrt(1+tan^2theta)+(cosectheta)/(sqrt(1+cot^2th...

    Text Solution

    |

  14. The minimum value of the function f(x)=sinx/(sqrt(1-cos^2x))+cosx/sqrt...

    Text Solution

    |

  15. If abs(cos theta{sin theta+sqrt(sin^2theta+sin^2alpha)})lek, then the ...

    Text Solution

    |

  16. In which of the following intervals the inequality, sinx < cos x < tan...

    Text Solution

    |

  17. Th range of k for which the inequaliity kcos^2x-kcosx+1>=0 AA x in(-o...

    Text Solution

    |

  18. Find the value of cospi/7+cos(2pi)/7+cos(3pi)/7+cos(4pi)/7+cos(5pi)/7+...

    Text Solution

    |

  19. The numerical value of tanpi/3+2tan(2pi)/3+4tan(4pi)/3+8tan(8pi)/3 is ...

    Text Solution

    |

  20. The expression 3[sin^4(3/2pi-alpha)+sin^4(3pi+alpha)]-2[sin^6(1/2pi+al...

    Text Solution

    |