Home
Class 12
MATHS
If a and b are positive quantities, (a g...

If a and b are positive quantities, `(a gt b)` find minimum positive value of `(a sectheta- b tantheta)`

A

2ab

B

`sqrt(a^2-b^2)`

C

a-b

D

`sqrt(a^2+b^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum positive value of \( S = a \sec \theta - b \tan \theta \) given that \( a \) and \( b \) are positive quantities and \( a > b \), we can follow these steps: ### Step 1: Define the expression Let \( S = a \sec \theta - b \tan \theta \). ### Step 2: Rearrange the equation Rearranging gives us: \[ S + b \tan \theta = a \sec \theta \] ### Step 3: Square both sides Squaring both sides results in: \[ (S + b \tan \theta)^2 = (a \sec \theta)^2 \] This expands to: \[ S^2 + 2bS \tan \theta + b^2 \tan^2 \theta = a^2 \sec^2 \theta \] ### Step 4: Use the identity for secant Recall the trigonometric identity \( \sec^2 \theta = 1 + \tan^2 \theta \). Thus, we can write: \[ a^2 \sec^2 \theta = a^2 (1 + \tan^2 \theta) = a^2 + a^2 \tan^2 \theta \] ### Step 5: Substitute back into the equation Substituting this back gives: \[ S^2 + 2bS \tan \theta + b^2 \tan^2 \theta = a^2 + a^2 \tan^2 \theta \] ### Step 6: Rearranging the equation Rearranging leads to: \[ b^2 \tan^2 \theta - a^2 \tan^2 \theta + 2bS \tan \theta + S^2 + a^2 = 0 \] This can be rewritten as: \[ (b^2 - a^2) \tan^2 \theta + 2bS \tan \theta + (S^2 + a^2) = 0 \] ### Step 7: Identify as a quadratic in \( \tan \theta \) This is a quadratic equation in \( \tan \theta \): \[ A \tan^2 \theta + B \tan \theta + C = 0 \] where \( A = b^2 - a^2 \), \( B = 2bS \), and \( C = S^2 + a^2 \). ### Step 8: Apply the discriminant condition For the quadratic to have real roots, the discriminant must be non-negative: \[ B^2 - 4AC \geq 0 \] Substituting the values gives: \[ (2bS)^2 - 4(b^2 - a^2)(S^2 + a^2) \geq 0 \] ### Step 9: Simplifying the discriminant Expanding this leads to: \[ 4b^2S^2 - 4(b^2 - a^2)(S^2 + a^2) \geq 0 \] This simplifies to: \[ 4b^2S^2 - 4b^2S^2 + 4a^2(b^2 - a^2) \geq 0 \] which simplifies to: \[ 4a^2(b^2 - a^2) \geq 0 \] ### Step 10: Finding the minimum positive value Since \( a > b \), we have \( b^2 - a^2 < 0 \). Thus, we can conclude: \[ S^2 \geq a^2 - b^2 \] Taking the square root gives: \[ S \geq \sqrt{a^2 - b^2} \] ### Conclusion The minimum positive value of \( S = a \sec \theta - b \tan \theta \) is: \[ \sqrt{a^2 - b^2} \]

To find the minimum positive value of \( S = a \sec \theta - b \tan \theta \) given that \( a \) and \( b \) are positive quantities and \( a > b \), we can follow these steps: ### Step 1: Define the expression Let \( S = a \sec \theta - b \tan \theta \). ### Step 2: Rearrange the equation Rearranging gives us: \[ ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|17 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.14|1 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

If a,b,c three unequal positive quantities in H.P .then

If tantheta=(3)/(4) ,then find the value of sectheta+tantheta .

If sin theta=(a)/(b) ,then find the value of (i) costheta , (ii) tantheta

If a and b are positive integers such that a^(2)-b^(4)=2009, find a+b

If sintheta=(4)/(5) , then the value of sectheta.tantheta is

If a and b are positive real numbers such that a+b =c, then the minimum value of ((4 )/(a)+ (1)/(b)) is equal to :

If a and b are positive numbers such that a^(2) + b^(2) = 4 , then find the maximum value of a^(2) b .

If 2x^(3)+ax^(2)+bx+4=0 (a and b are positive real numbers) has three real roots. The minimum value of (a+b)^(3) is

If a and b are positive integers satisfying (a+3)^(2)+(b+1)^(2)=85 , what is the minimum value of (2a+b)?

Let a, b, c be positive numbers, then the minimum value of (a^4+b^4+c^2)/(abc)

CENGAGE ENGLISH-TRIGONOMETRIC FUNCTIONS -Exercises
  1. If thetaigt0" for "1lethetalenandtheta1+theta2+theta3+...+thetan=pithe...

    Text Solution

    |

  2. The set of values of lambda in R such that sin^2theta+costheta=lambda...

    Text Solution

    |

  3. Let A=sin^8theta+cos^14theta, " then "A("max") is

    Text Solution

    |

  4. Minimum value of y=256sin^2x+324cos e c^2xAAx in R is 432 (b) 504 ...

    Text Solution

    |

  5. If a and b are positive quantities, (a gt b) find minimum positive val...

    Text Solution

    |

  6. If y=(sinx+cosecx)^2+(cosx+secx)^2 then the minimum value of y,AAx in ...

    Text Solution

    |

  7. The variable x satisfying the equation |sinxcosx|+sqrt(2+tan^2+cot^2x)...

    Text Solution

    |

  8. If the equation cot^4x-2cos e c^2x+a^2=0 has at least one solution, th...

    Text Solution

    |

  9. If cos^2x-(c-1)cosx+2cgeq6 for every x in R , then the true set of va...

    Text Solution

    |

  10. If the inequality sin^2x+acosx+a^2>1+cosx holds for any x in R , then...

    Text Solution

    |

  11. If (3pi)/4 lt alpha lt pi, then sqrt(2cotalpha+1/(sin^2alpha)) is equ...

    Text Solution

    |

  12. The value of sectheta/sqrt(1+tan^2theta)+(cosectheta)/(sqrt(1+cot^2th...

    Text Solution

    |

  13. The minimum value of the function f(x)=sinx/(sqrt(1-cos^2x))+cosx/sqrt...

    Text Solution

    |

  14. If abs(cos theta{sin theta+sqrt(sin^2theta+sin^2alpha)})lek, then the ...

    Text Solution

    |

  15. In which of the following intervals the inequality, sinx < cos x < tan...

    Text Solution

    |

  16. Th range of k for which the inequaliity kcos^2x-kcosx+1>=0 AA x in(-o...

    Text Solution

    |

  17. Find the value of cospi/7+cos(2pi)/7+cos(3pi)/7+cos(4pi)/7+cos(5pi)/7+...

    Text Solution

    |

  18. The numerical value of tanpi/3+2tan(2pi)/3+4tan(4pi)/3+8tan(8pi)/3 is ...

    Text Solution

    |

  19. The expression 3[sin^4(3/2pi-alpha)+sin^4(3pi+alpha)]-2[sin^6(1/2pi+al...

    Text Solution

    |

  20. The value of the expression log10(tan6^@)+log10(tan12^@)+log10(tan18^@...

    Text Solution

    |