Home
Class 12
MATHS
The variable x satisfying the equation |...

The variable `x` satisfying the equation `|sinxcosx|+sqrt(2+tan^2+cot^2x)=sqrt(3)` belongs to the interval `[0,pi/3]` (b) `(pi/3,pi/3)` (c) `[(3pi)/4,pi]` (d) none-existent

A

`[0,pi/3]`

B

`(pi/3pi/2)`

C

`[(3pi)/4,pi)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( |\sin x \cos x| + \sqrt{2 + \tan^2 x + \cot^2 x} = \sqrt{3} \), we will follow these steps: ### Step 1: Rewrite the Equation We start with the equation: \[ |\sin x \cos x| + \sqrt{2 + \tan^2 x + \cot^2 x} = \sqrt{3} \] ### Step 2: Simplify the Square Root Term Recall that: \[ \tan^2 x + \cot^2 x = \frac{\sin^2 x}{\cos^2 x} + \frac{\cos^2 x}{\sin^2 x} \] Using the identity \( a + b \geq 2\sqrt{ab} \), we can simplify: \[ \tan^2 x + \cot^2 x \geq 2 \] Thus: \[ 2 + \tan^2 x + \cot^2 x \geq 4 \] And therefore: \[ \sqrt{2 + \tan^2 x + \cot^2 x} \geq 2 \] ### Step 3: Analyze the Left Side of the Equation Since \( |\sin x \cos x| \) is always non-negative, we have: \[ |\sin x \cos x| + \sqrt{2 + \tan^2 x + \cot^2 x} \geq 2 + 0 = 2 \] ### Step 4: Compare with Right Side The right side of the equation is \( \sqrt{3} \), which is approximately \( 1.732 \). Since the left side is always greater than or equal to \( 2 \), we can conclude: \[ |\sin x \cos x| + \sqrt{2 + \tan^2 x + \cot^2 x} \geq 2 > \sqrt{3} \] ### Step 5: Conclusion Since the left side is always greater than \( \sqrt{3} \), there are no values of \( x \) that satisfy the equation. Thus, the solution belongs to the option: (d) none-existent.

To solve the equation \( |\sin x \cos x| + \sqrt{2 + \tan^2 x + \cot^2 x} = \sqrt{3} \), we will follow these steps: ### Step 1: Rewrite the Equation We start with the equation: \[ |\sin x \cos x| + \sqrt{2 + \tan^2 x + \cot^2 x} = \sqrt{3} \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|17 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.14|1 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

The value of x in (0,pi/2) satisfying the equation, (sqrt3-1)/sin x+ (sqrt3+1)/cosx=4sqrt2 is -

One of the root equation cosx-x+1/2=0 lies in the interval (0,pi/2) (b) (-pi/(2,0)) (c) (pi/2,pi) (d) (pi,(3pi)/2)

The smallest positive value of x (in radians) satisfying the equation (log)_(cosx)((sqrt(3))/2sinx)=2-(log)_(secx)(tanx) is (a) pi/(12) (b) pi/6 (c) pi/4 (d) pi/3

The number of solution(s) of the equation cos2theta=(sqrt(2)+1)(costheta-1/(sqrt(2))) , in the interval (-pi/4,(3pi)/4), is 4 (b) 1 (c) 2 (d) 3

The value of c in Lagranges theorem for the function f(x)=logsinx in the interval [pi/6,(5pi)/6] is (a) pi/4 (b) pi/2 (c) (2pi)/3 (d) none of these

The least positive solution of cot(pi/(3sqrt3) sin2x)=sqrt3 lie (a) (0,pi/6) (b) (pi/9,pi/6) (c) (pi/12,pi/9) (d) (pi/3,pi/2)

The smallest positive value of x (in radians) satisfying the equation (log)_(cosx)((sqrt(3))/2sinx)=2-(log)_(secx)(tanx), is pi/(12) (b) pi/6 (c) pi/4 (d) pi/3

f(x)=sin+sqrt(3)cosx is maximum when x= pi/3 (b) pi/4 (c) pi/6 (d) 0

Let Ssub(0,pi) denote the set of values of x satisfying the equation 8^1+|cos x|+cos^2x+|cos^(3x| tooo)=4^3 . Then, S= {pi//3} b. {pi//3,""2pi//3} c. {-pi//3,""2pi//3} d. {pi//3,""2pi//3}

Let Ssub(0,pi) denote the set of values of x satisfying the equation 8^1+|cos x|+cos^2x+|cos^(3x| tooo)=4^3 . Then, S= {pi//3} b. {pi//3,""2pi//3} c. {-pi//3,""2pi//3} d. {pi//3,""2pi//3}

CENGAGE ENGLISH-TRIGONOMETRIC FUNCTIONS -Exercises
  1. If thetaigt0" for "1lethetalenandtheta1+theta2+theta3+...+thetan=pithe...

    Text Solution

    |

  2. The set of values of lambda in R such that sin^2theta+costheta=lambda...

    Text Solution

    |

  3. Let A=sin^8theta+cos^14theta, " then "A("max") is

    Text Solution

    |

  4. Minimum value of y=256sin^2x+324cos e c^2xAAx in R is 432 (b) 504 ...

    Text Solution

    |

  5. If a and b are positive quantities, (a gt b) find minimum positive val...

    Text Solution

    |

  6. If y=(sinx+cosecx)^2+(cosx+secx)^2 then the minimum value of y,AAx in ...

    Text Solution

    |

  7. The variable x satisfying the equation |sinxcosx|+sqrt(2+tan^2+cot^2x)...

    Text Solution

    |

  8. If the equation cot^4x-2cos e c^2x+a^2=0 has at least one solution, th...

    Text Solution

    |

  9. If cos^2x-(c-1)cosx+2cgeq6 for every x in R , then the true set of va...

    Text Solution

    |

  10. If the inequality sin^2x+acosx+a^2>1+cosx holds for any x in R , then...

    Text Solution

    |

  11. If (3pi)/4 lt alpha lt pi, then sqrt(2cotalpha+1/(sin^2alpha)) is equ...

    Text Solution

    |

  12. The value of sectheta/sqrt(1+tan^2theta)+(cosectheta)/(sqrt(1+cot^2th...

    Text Solution

    |

  13. The minimum value of the function f(x)=sinx/(sqrt(1-cos^2x))+cosx/sqrt...

    Text Solution

    |

  14. If abs(cos theta{sin theta+sqrt(sin^2theta+sin^2alpha)})lek, then the ...

    Text Solution

    |

  15. In which of the following intervals the inequality, sinx < cos x < tan...

    Text Solution

    |

  16. Th range of k for which the inequaliity kcos^2x-kcosx+1>=0 AA x in(-o...

    Text Solution

    |

  17. Find the value of cospi/7+cos(2pi)/7+cos(3pi)/7+cos(4pi)/7+cos(5pi)/7+...

    Text Solution

    |

  18. The numerical value of tanpi/3+2tan(2pi)/3+4tan(4pi)/3+8tan(8pi)/3 is ...

    Text Solution

    |

  19. The expression 3[sin^4(3/2pi-alpha)+sin^4(3pi+alpha)]-2[sin^6(1/2pi+al...

    Text Solution

    |

  20. The value of the expression log10(tan6^@)+log10(tan12^@)+log10(tan18^@...

    Text Solution

    |