Home
Class 12
MATHS
The minimum value of the function f(x)=s...

The minimum value of the function `f(x)=sinx/(sqrt(1-cos^2x))+cosx/sqrt(1-sin^2x)+tanx/sqrt(sec^2x-1)+cotx/sqrt(cosec^2x-1)` whenever it is defined is

A

4

B

-2

C

0

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the function \[ f(x) = \frac{\sin x}{\sqrt{1 - \cos^2 x}} + \frac{\cos x}{\sqrt{1 - \sin^2 x}} + \frac{\tan x}{\sqrt{\sec^2 x - 1}} + \frac{\cot x}{\sqrt{\csc^2 x - 1}}, \] we can simplify each term step by step. ### Step 1: Simplify each term 1. The first term: \[ \frac{\sin x}{\sqrt{1 - \cos^2 x}} = \frac{\sin x}{\sqrt{\sin^2 x}} = \frac{\sin x}{|\sin x|}. \] This equals 1 if \(\sin x > 0\) (first and second quadrants) and -1 if \(\sin x < 0\) (third and fourth quadrants). 2. The second term: \[ \frac{\cos x}{\sqrt{1 - \sin^2 x}} = \frac{\cos x}{\sqrt{\cos^2 x}} = \frac{\cos x}{|\cos x|}. \] This equals 1 if \(\cos x > 0\) (first and fourth quadrants) and -1 if \(\cos x < 0\) (second and third quadrants). 3. The third term: \[ \frac{\tan x}{\sqrt{\sec^2 x - 1}} = \frac{\tan x}{\sqrt{\tan^2 x}} = \frac{\tan x}{|\tan x|}. \] This equals 1 if \(\tan x > 0\) (first and third quadrants) and -1 if \(\tan x < 0\) (second and fourth quadrants). 4. The fourth term: \[ \frac{\cot x}{\sqrt{\csc^2 x - 1}} = \frac{\cot x}{\sqrt{\cot^2 x}} = \frac{\cot x}{|\cot x|}. \] This equals 1 if \(\cot x > 0\) (first and fourth quadrants) and -1 if \(\cot x < 0\) (second and third quadrants). ### Step 2: Analyze the function in different quadrants Now we will analyze \(f(x)\) in each quadrant: - **First Quadrant (0 < x < π/2)**: - All trigonometric functions are positive. - \(f(x) = 1 + 1 + 1 + 1 = 4\). - **Second Quadrant (π/2 < x < π)**: - \(\sin x > 0\), \(\cos x < 0\), \(\tan x < 0\), \(\cot x < 0\). - \(f(x) = 1 - 1 - 1 - 1 = -2\). - **Third Quadrant (π < x < 3π/2)**: - \(\sin x < 0\), \(\cos x < 0\), \(\tan x > 0\), \(\cot x > 0\). - \(f(x) = -1 - 1 + 1 + 1 = 0\). - **Fourth Quadrant (3π/2 < x < 2π)**: - \(\sin x < 0\), \(\cos x > 0\), \(\tan x < 0\), \(\cot x > 0\). - \(f(x) = -1 + 1 - 1 + 1 = 0\). ### Step 3: Determine the minimum value From the analysis: - In the first quadrant, \(f(x) = 4\). - In the second quadrant, \(f(x) = -2\). - In the third quadrant, \(f(x) = 0\). - In the fourth quadrant, \(f(x) = 0\). The minimum value of \(f(x)\) occurs in the second quadrant, where \(f(x) = -2\). Thus, the minimum value of the function is \[ \boxed{-2}. \]

To find the minimum value of the function \[ f(x) = \frac{\sin x}{\sqrt{1 - \cos^2 x}} + \frac{\cos x}{\sqrt{1 - \sin^2 x}} + \frac{\tan x}{\sqrt{\sec^2 x - 1}} + \frac{\cot x}{\sqrt{\csc^2 x - 1}}, \] we can simplify each term step by step. ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|17 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.14|1 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

The minimum value of the function f(x)=(sinx)/(sqrt(1-cos^2x))+(cosx)/(sqrt(1-sin^2x))+(tanx)/(sqrt(sec^2x-1))+(cotx)/(sqrt(c o s e c^2x-1)) whenever it is defined is

The function f(x)=sqrt(1-sqrt(1-x^2))

The domain of the function f(x)=sqrt(x-sqrt(1-x^2)) is

The function f(x)=sin(log(x+ sqrt(x^2+1))) ​

Domain of the function f(x)=sqrt(2-sec^(-1)x) is

The range of the function f(x) = sqrt(2-x)+sqrt( 1+x)

The domain of the function f(x)=sqrt(cos^(- 1)((1-|x|)/2)) is

The domain of the function f(x)=sqrt(1/((x|-1)cos^(- 1)(2x+1)tan3x)) is

The function f(x) = sec[log(x + sqrt(1+x^2))] is

The function f(x) = sec[log(x + sqrt(1+x^2))] is

CENGAGE ENGLISH-TRIGONOMETRIC FUNCTIONS -Exercises
  1. If thetaigt0" for "1lethetalenandtheta1+theta2+theta3+...+thetan=pithe...

    Text Solution

    |

  2. The set of values of lambda in R such that sin^2theta+costheta=lambda...

    Text Solution

    |

  3. Let A=sin^8theta+cos^14theta, " then "A("max") is

    Text Solution

    |

  4. Minimum value of y=256sin^2x+324cos e c^2xAAx in R is 432 (b) 504 ...

    Text Solution

    |

  5. If a and b are positive quantities, (a gt b) find minimum positive val...

    Text Solution

    |

  6. If y=(sinx+cosecx)^2+(cosx+secx)^2 then the minimum value of y,AAx in ...

    Text Solution

    |

  7. The variable x satisfying the equation |sinxcosx|+sqrt(2+tan^2+cot^2x)...

    Text Solution

    |

  8. If the equation cot^4x-2cos e c^2x+a^2=0 has at least one solution, th...

    Text Solution

    |

  9. If cos^2x-(c-1)cosx+2cgeq6 for every x in R , then the true set of va...

    Text Solution

    |

  10. If the inequality sin^2x+acosx+a^2>1+cosx holds for any x in R , then...

    Text Solution

    |

  11. If (3pi)/4 lt alpha lt pi, then sqrt(2cotalpha+1/(sin^2alpha)) is equ...

    Text Solution

    |

  12. The value of sectheta/sqrt(1+tan^2theta)+(cosectheta)/(sqrt(1+cot^2th...

    Text Solution

    |

  13. The minimum value of the function f(x)=sinx/(sqrt(1-cos^2x))+cosx/sqrt...

    Text Solution

    |

  14. If abs(cos theta{sin theta+sqrt(sin^2theta+sin^2alpha)})lek, then the ...

    Text Solution

    |

  15. In which of the following intervals the inequality, sinx < cos x < tan...

    Text Solution

    |

  16. Th range of k for which the inequaliity kcos^2x-kcosx+1>=0 AA x in(-o...

    Text Solution

    |

  17. Find the value of cospi/7+cos(2pi)/7+cos(3pi)/7+cos(4pi)/7+cos(5pi)/7+...

    Text Solution

    |

  18. The numerical value of tanpi/3+2tan(2pi)/3+4tan(4pi)/3+8tan(8pi)/3 is ...

    Text Solution

    |

  19. The expression 3[sin^4(3/2pi-alpha)+sin^4(3pi+alpha)]-2[sin^6(1/2pi+al...

    Text Solution

    |

  20. The value of the expression log10(tan6^@)+log10(tan12^@)+log10(tan18^@...

    Text Solution

    |