Home
Class 12
MATHS
(a+2)sinalpha+(2a-1)cosalpha=(2a+1)iftan...

`(a+2)sinalpha+(2a-1)cosalpha=(2a+1)iftanalpha"i s"` `3/4` (b) `4/3` (c) `2a(a^2+1)` (d) `2a(a^2-1)`

A

`3//4`

B

`4//3`

C

`2a//(a^2+1)`

D

`2a//(a^2-1)`

Text Solution

Verified by Experts

The correct Answer is:
B, D

Divide by `cosalpha` and square both sides abd let `tanalpha=t` so that ` sec^2alpha=1+t^2`
`rArr [(a+2)t+(2a-1)]^2=[(2a+1)^2(1+t^2)]`
`rArr t^3[(a+2)^2-(2a+1)^2]+2(a+2)(2a-1)t+[(2a-1)^2-(2a+1)^2]=0`
`or 3(1-a^2)t^2+2(2a^2+3a-2)t-4xx2a=0`
`or 3(1-a^2)t^2+2(2a^2+3a-2)t-4xx2a=0`
`or t(1-a^2)t^2-4(1-a^2)t-6at-8a=0`
`or (3t-4)[(1-a^2)t+2a]=0`
`or t-tanalpha=4/3or(2a)/(a^2-1)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Exercises|57 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

(a+2)sinalpha+(2a-1)cosalpha=(2a+1)iftanalpha"i s" (a) 3/4 (b) 4/3 (c) 2a(a^2+1) (d) (2a)/(a^2-1)

4 1/3-2 1/3= (a) 2 1/3 (b) 2 (c) 3 1/3 (d) 1/2

If A=[[cosalpha,-sinalpha],[sinalpha,cosalpha]] , then A+A^(prime)=I , if the value of alpha is (A) pi/6 (b) pi/3 (c) pi (d) (3pi)/2

If π<α<3π2 then sqrt((1-cosalpha)/(1+cosalpha))+sqrt((1+cosalpha)/(1-cosalpha)) is equal to (a) 2/(sinalpha) (b) -2/(sinalpha) (c) 1/(sinalpha) (d) -1/(sinalpha)

Givent that pi/2 lt alphaltpi then the expression sqrt((1-sinalpha)/(1+sinalpha))+sqrt((1+sinalpha)/(1-sinalpha)) (A) 1/(cosalpha) (B) - 2/(cosalpha) (C) 2/(cosalpha) (D) does not exist

Find the adjoint of the following matrices: [(cosalpha,sinalpha),(sinalpha,cosalpha)] (ii) [(1,tanalpha//2),(-tanalpha//2, 1)] Verify that (a d j\ A)A=|A|I=A(a d j\ A) for the above matrices.

If sinalpha-sinbeta=1/3andcosbeta-cosalpha=1/2, show that cot(alpha+beta)/2=2/3

The factors of 8a^3+b^3-6a b+1 are (a) (2a+b-1)(4a^2+b^2+1-3a b-2a) (b) (2a-b+1)(4a^2+b^2-4a b+1-2a+b) (c) (2a+b+1)(4a^2+b^2+1-2a b-b-2a) (d) (2a-1+b)(4a^2+1-4a-b-2a b)

If 5tanalpha=4 , show that (5sinalpha-3cosalpha)/(5sinalpha+2cosalpha)=1/6

If (2sinalpha)/(1+cosalpha +sinalpha)=y , then prove that (1-cosalpha+sinalpha )/(1+sinalpha) is also equal to y.