Home
Class 12
MATHS
If bgt1, sintgt0,costgt0andlogb(sint)=x,...

If `bgt1, sintgt0,costgt0andlog_b(sint)=x," then "log_b(cost)` is equal to

A

`1/2log_b(1-b^(2x))`

B

`2log(1-b^(x//2))`

C

`log_bsqrt(1-b^(2x))`

D

`sqrt(1-x^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \log_b(\cos t) \) given that \( \log_b(\sin t) = x \), where \( b > 1 \), \( \sin t > 0 \), and \( \cos t > 0 \). ### Step-by-step Solution: 1. **Start with the given information:** \[ \log_b(\sin t) = x \] This implies: \[ \sin t = b^x \] 2. **Use the Pythagorean identity:** We know from trigonometric identities that: \[ \sin^2 t + \cos^2 t = 1 \] Therefore, we can express \( \cos^2 t \) in terms of \( \sin t \): \[ \cos^2 t = 1 - \sin^2 t \] 3. **Substitute \( \sin t \) into the identity:** Substitute \( \sin t = b^x \): \[ \cos^2 t = 1 - (b^x)^2 = 1 - b^{2x} \] 4. **Take the square root to find \( \cos t \):** Since \( \cos t > 0 \), we take the positive root: \[ \cos t = \sqrt{1 - b^{2x}} \] 5. **Express \( \log_b(\cos t) \):** Now, we need to find \( \log_b(\cos t) \): \[ \log_b(\cos t) = \log_b(\sqrt{1 - b^{2x}}) \] 6. **Use the logarithmic property:** Using the property of logarithms that states \( \log_b(a^c) = c \cdot \log_b(a) \): \[ \log_b(\cos t) = \frac{1}{2} \log_b(1 - b^{2x}) \] 7. **Final expression:** Thus, we can express \( \log_b(\cos t) \) as: \[ \log_b(\cos t) = \frac{1}{2} \log_b(1 - b^{2x}) \] ### Conclusion: The final answer is: \[ \log_b(\cos t) = \frac{1}{2} \log_b(1 - b^{2x}) \]

To solve the problem, we need to find the value of \( \log_b(\cos t) \) given that \( \log_b(\sin t) = x \), where \( b > 1 \), \( \sin t > 0 \), and \( \cos t > 0 \). ### Step-by-step Solution: 1. **Start with the given information:** \[ \log_b(\sin t) = x \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Exercises|57 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

If b >1,sint >0,cost >0a n d(log)_b(sint)=x ,t h e n(log)_b(cost) is equal to 1/2(log)_b(a-b^(2x)) (b) 2log(1-b^(x/2)) (log)_bsqrt(1-b^(2x)) (d) sqrt(1-x^2)

If log_a(ab)=x then log_b(ab) is equals to

int_0^1log(1/x-1)dx is equal to

log_(0.01) 1000 +log_(0.1)0.0001 is equal to :

If a gt 0,bgt 0,cgt0 and 2a +b+3c=1 , then

If log_(10) 2 = a, log_(10)3 = b" then "log_(0.72)(9.6) in terms of a and b is equal to

If g(x)=int_0^x(|sint|+|cost|)dt ,then g(x+(pin)/2) is equal to, where n in N , (a) g(x)+g(pi) (b) g(x)+g((npi)/(2)) (c) g(x)+g(pi/2) (d) none of these

If b gt 1, x gt 0 and (2x)^(log_(b) 2)-(3x)^(log_(b) 3)=0 , then x is

If (log)_3x=a and (log)_7x=b , then which of the following is equal to (log)_(21)x ? a b (b) (a b)/(a^(-1)+b^(-1)) 1/(a+b) (d) 1/(a^(-1)+b^(-1))

If a,b,c are distinct real number different from 1 such that (log_(b)a. log_(c)a-log_(a)a) + (log_(a)b.log_(c)b-log_(b)b) +(log_(a)c.log_(b)c-log_(c)C)=0 , then abc is equal to