Home
Class 12
MATHS
If 2sec^2 alpha- sec^4 alpha-2 cosec^2 a...

If `2sec^2 alpha- sec^4 alpha-2 cosec^2 alpha+cosec^4 alpha=15/4` then `tan alpha=`

A

`1//sqrt2`

B

`1//2`

C

`1//22sqrt2`

D

`-1//sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2\sec^2 \alpha - \sec^4 \alpha - 2\csc^2 \alpha + \csc^4 \alpha = \frac{15}{4} \), we will follow these steps: ### Step 1: Rearranging the equation We start by rearranging the equation to group the terms with squares and fourth powers together: \[ 2\sec^2 \alpha - \sec^4 \alpha - 2\csc^2 \alpha + \csc^4 \alpha = \frac{15}{4} \] ### Step 2: Factoring the equation We can factor the equation by recognizing that \( \csc^4 \alpha - \sec^4 \alpha \) can be expressed as a difference of squares: \[ \sec^4 \alpha - \csc^4 \alpha = (\sec^2 \alpha - \csc^2 \alpha)(\sec^2 \alpha + \csc^2 \alpha) \] Thus, we rewrite the equation as: \[ 2\sec^2 \alpha - \sec^4 \alpha - 2\csc^2 \alpha + \csc^4 \alpha = 2(\sec^2 \alpha - \csc^2 \alpha) + (\csc^2 \alpha - \sec^2 \alpha)(\sec^2 \alpha + \csc^2 \alpha) = \frac{15}{4} \] ### Step 3: Substituting identities Using the identities \( \sec^2 \alpha = 1 + \tan^2 \alpha \) and \( \csc^2 \alpha = 1 + \cot^2 \alpha \), we can substitute these into the equation: \[ 2(1 + \tan^2 \alpha) - (1 + \tan^2 \alpha)^2 - 2(1 + \cot^2 \alpha) + (1 + \cot^2 \alpha)^2 = \frac{15}{4} \] ### Step 4: Simplifying the equation Now we simplify the expression: \[ 2 + 2\tan^2 \alpha - (1 + 2\tan^2 \alpha + \tan^4 \alpha) - 2 - 2\cot^2 \alpha + (1 + 2\cot^2 \alpha + \cot^4 \alpha) = \frac{15}{4} \] This simplifies to: \[ -\tan^4 \alpha + \cot^4 \alpha = \frac{15}{4} \] ### Step 5: Converting cotangent to tangent Since \( \cot \alpha = \frac{1}{\tan \alpha} \), we can express \( \cot^4 \alpha \) in terms of \( \tan \alpha \): \[ -\tan^4 \alpha + \frac{1}{\tan^4 \alpha} = \frac{15}{4} \] ### Step 6: Multiplying through by \( \tan^4 \alpha \) Let \( x = \tan^4 \alpha \). Then we have: \[ -x^2 + 1 = \frac{15}{4} x \] Rearranging gives: \[ 4x^2 + 15x - 4 = 0 \] ### Step 7: Solving the quadratic equation We can solve this quadratic equation using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 4, b = 15, c = -4 \): \[ x = \frac{-15 \pm \sqrt{15^2 - 4 \cdot 4 \cdot (-4)}}{2 \cdot 4} \] \[ x = \frac{-15 \pm \sqrt{225 + 64}}{8} \] \[ x = \frac{-15 \pm \sqrt{289}}{8} \] \[ x = \frac{-15 \pm 17}{8} \] ### Step 8: Finding the roots Calculating the roots: 1. \( x = \frac{2}{8} = \frac{1}{4} \) 2. \( x = \frac{-32}{8} = -4 \) (not valid since \( x \) must be non-negative) Thus, we have: \[ \tan^4 \alpha = \frac{1}{4} \] ### Step 9: Taking the square root Taking the square root gives: \[ \tan^2 \alpha = \frac{1}{2} \] Finally, taking the square root again: \[ \tan \alpha = \pm \frac{1}{\sqrt{2}} = \pm \frac{\sqrt{2}}{2} \] ### Final Answer Thus, the value of \( \tan \alpha \) is: \[ \tan \alpha = \frac{1}{\sqrt{2}} \text{ or } -\frac{1}{\sqrt{2}} \]

To solve the equation \( 2\sec^2 \alpha - \sec^4 \alpha - 2\csc^2 \alpha + \csc^4 \alpha = \frac{15}{4} \), we will follow these steps: ### Step 1: Rearranging the equation We start by rearranging the equation to group the terms with squares and fourth powers together: \[ 2\sec^2 \alpha - \sec^4 \alpha - 2\csc^2 \alpha + \csc^4 \alpha = \frac{15}{4} \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Exercises|57 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

Show that 1 + cot^2 alpha / (1+ cosec alpha) = cosec alpha

If 0 < alpha < pi/ 6 then alpha(cosec alpha) is

If a sec alpha-c tan alpha=d and b sec alpha + d tan alpha=c , then eliminate alpha from above equations.

cos alpha cos 2 alpha cos 4 alpha cos 8 alpha = (1)/(16), if alpha = 24 ^(@)

If 10sin^4 alpha +15cos^4alpha=6 then the value of 9cosec^4 alpha + 8 sec^4 alpha-75 is

(cos alpha + 2 cos 3 alpha + cos 5 alpha )/(cos 3 alpha + 2 cos 5 alpha + cos 7 alpha ) = cos 3 alpha sec 5 alpha .

Prove that cot alpha - tan alpha =2 cot 2 alpha.

If cos^4 theta sec^2 alpha,1/2 and sin^4 theta cosec^2 alpha are in A.P. , then cos^8 theta sec^6 alpha ,1/2 and sin^8 theta cosec^6 alpha are

If latus recturn of the ellipse x^2 tan^2 alpha+y^2 sec^2 alpha= 1 is 1/2 then alpha(0 lt alpha lt pi) is equal to

If 10sin^(4)alpha+15cos^(4)alpha=6 and the value of 9"cosec"^(4)alpha+8 sec^(4) alpha is S, then find the value of (S)/(25) .