Home
Class 12
MATHS
If cottheta+tantheta=xand sectheta-costh...

If `cottheta+tantheta=xand sectheta-costheta=y`, then

A

`xsintheta.costheta=1`

B

`sin^2theta=ycostheta`

C

`(x^2y)^(1//3)+(xy^2)^(1//3)=1`

D

`(x^2y)^(2//3)-(xy^2)^(2//3)=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem given that \( \cot \theta + \tan \theta = x \) and \( \sec \theta - \cos \theta = y \), we will derive expressions for \( x \) and \( y \) in terms of \( \sin \theta \) and \( \cos \theta \), and then explore the relationships between them. ### Step-by-Step Solution: 1. **Express \( \cot \theta + \tan \theta \) in terms of sine and cosine:** \[ \cot \theta = \frac{\cos \theta}{\sin \theta}, \quad \tan \theta = \frac{\sin \theta}{\cos \theta} \] Therefore, \[ \cot \theta + \tan \theta = \frac{\cos \theta}{\sin \theta} + \frac{\sin \theta}{\cos \theta} \] Taking the common denominator: \[ = \frac{\cos^2 \theta + \sin^2 \theta}{\sin \theta \cos \theta} \] Using the identity \( \cos^2 \theta + \sin^2 \theta = 1 \): \[ = \frac{1}{\sin \theta \cos \theta} \] Thus, we have: \[ x = \frac{1}{\sin \theta \cos \theta} \] 2. **Express \( \sec \theta - \cos \theta \) in terms of sine and cosine:** \[ \sec \theta = \frac{1}{\cos \theta} \] Therefore, \[ \sec \theta - \cos \theta = \frac{1}{\cos \theta} - \cos \theta \] Taking the common denominator: \[ = \frac{1 - \cos^2 \theta}{\cos \theta} \] Using the identity \( 1 - \cos^2 \theta = \sin^2 \theta \): \[ = \frac{\sin^2 \theta}{\cos \theta} \] Thus, we have: \[ y = \frac{\sin^2 \theta}{\cos \theta} \] 3. **Calculate \( x^2 y \):** \[ x^2 = \left(\frac{1}{\sin \theta \cos \theta}\right)^2 = \frac{1}{\sin^2 \theta \cos^2 \theta} \] Therefore, \[ x^2 y = \frac{1}{\sin^2 \theta \cos^2 \theta} \cdot \frac{\sin^2 \theta}{\cos \theta} = \frac{1}{\cos^3 \theta} \] 4. **Calculate \( x y^2 \):** \[ y^2 = \left(\frac{\sin^2 \theta}{\cos \theta}\right)^2 = \frac{\sin^4 \theta}{\cos^2 \theta} \] Therefore, \[ x y^2 = \frac{1}{\sin \theta \cos \theta} \cdot \frac{\sin^4 \theta}{\cos^2 \theta} = \frac{\sin^4 \theta}{\sin \theta \cos^3 \theta} = \frac{\sin^3 \theta}{\cos^3 \theta} \] 5. **Check the options:** - For \( x^2 y \) we found \( \frac{1}{\cos^3 \theta} \). - For \( x y^2 \) we found \( \frac{\sin^3 \theta}{\cos^3 \theta} \). 6. **Final relationships:** - We can conclude that \( x^2 y = \frac{1}{\cos^3 \theta} \) and \( x y^2 = \frac{\sin^3 \theta}{\cos^3 \theta} \). - Thus, we can verify the options provided in the original question.

To solve the problem given that \( \cot \theta + \tan \theta = x \) and \( \sec \theta - \cos \theta = y \), we will derive expressions for \( x \) and \( y \) in terms of \( \sin \theta \) and \( \cos \theta \), and then explore the relationships between them. ### Step-by-Step Solution: 1. **Express \( \cot \theta + \tan \theta \) in terms of sine and cosine:** \[ \cot \theta = \frac{\cos \theta}{\sin \theta}, \quad \tan \theta = \frac{\sin \theta}{\cos \theta} \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Exercises|57 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

If cottheta+tantheta=x and sectheta-costheta=y then (i) sintheta costheta=-x (ii) sintheta tantheta=-y (iii) (x^2y)^(2/3)-(xy^2)^(2/3)=1 (iv) (x^2y)^(1/3)+(xy^2)^(1/3)=1

If cottheta+tantheta=x and sectheta-costheta=y , prove that (x^2y)^(2/3)-(x y^2)^(2/3)=1

If tantheta-cottheta=aandsintheta+costheta=b, then, (b^2-1)^2(a^2+4) is equal to

Solve: tantheta+sectheta=2costheta

If x=sectheta-tanthetaa n dy=cos e ctheta+cottheta, then prove that x y+1=y-xdot

If sectheta+tantheta=k find the value of costheta

tantheta /(1-cottheta ) + cottheta/(1-tan theta)= 1+sectheta*cosectheta

If x=sectheta "and " y=cosec theta +cottheta , then prove that xy+1=y-x .

Prove that ("cosec "theta-sintheta)(sectheta-costheta)(tantheta+cottheta)=1

Prove the following identities: (cos e ctheta-sintheta)(sectheta-costheta)=1/(tantheta+cottheta)