Home
Class 12
MATHS
If x=secphi -tanphi and y="cosec" phi+c...

If `x=secphi -tanphi and y="cosec" phi+cotphi`, then show that `xy+x-y+1=0.`

A

`x=(y+1)/(y-1)`

B

`x=(y-1)/(y+1)`

C

`y=(1+x)/(1-x)`

D

`xy+x-y+1=0`

Text Solution

Verified by Experts

The correct Answer is:
B, C, D

We have `x=(1-sinphi)/(cosphi),y=(1+cosphi)/sinphi`
Multiplying, we get
`xy=((1-sinphi)(1+cosphi))/(cosphisinphi)`
`rArr xy+1=(1sinphicosphi=sinphicosphi)/(cosphisinphi)`
`=(1-sinphi+cosphi)/(cosphisinphi)`
`andx-y=((1-sinphi)sinphi-cosphi(1+cosphi))/(cosphisinphi)`
`=(sinphi-sin^2phi-cosphi-cos^2phi)/(cosphisinphi)`
`=(sinphi-cosphi-1)/(cosphisinphi)=-(xy+1)`
Thus, `xy+x-y+1=0, x=(1+x)/(1-x)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Exercises|57 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

If x=sectheta "and " y=cosec theta +cottheta , then prove that xy+1=y-x .

If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy=

x = a cosec theta + b cot theta and y= a cosec theta - b cot theta show that [ (x+y)/a ]^2 -[ (x-y)/b]^2 =4

If x=sint,y=sinKt then show that (1-x^(2))y_2-xy_(1)+K^(2)y=0 .

If phi(x) is a differentiable function AAx in Rand a inR^(+) such that phi(0)=phi(2a),phi(a)=phi(3a)and phi(0)nephi(a), then show that there is at least one root of equation phi'(x+a)=phi'(x)"in"(0,2a).

If y=e^(2x)(a x+b) , show that y_2-4\ y_1+4\ y=0 .

If y="cosec"^(-1)x ,\ \ x >1 , then show that x(x^2-1)(d^2y)/(dx^2)+(2x^2-1)(dy)/(dx)=0 .

If cos(theta+phi)= mcos(theta-phi) , then prove that tan theta=(1-m)/(1+m)cotphi .

If logy=tan^(-1)x , show that (1+x^2)y_2+(2x-1)y_1=0 .

If (sectheta+tantheta)(secphi+tanphi)(secPsi+tanPsi)=tanthetatanphitanPsi, then prove that (sectheta-tantheta)(secphi-tanphi)(secPsi-tanPsi)=cottheta.cotphi.cotPsi