Home
Class 12
MATHS
If cosalpha=1/2(x+1/x) cosbeta=1/2(y+1/y...

If `cosalpha=1/2(x+1/x)` `cosbeta=1/2(y+1/y)` then `cos(alpha-beta)` is equal to

A

`sin(alpha+beta+gamma)=singammaAAgammainR`

B

`cosalphacosbeta=1AAalpha,beta inR`

C

`(cosalpha+cosbeta)^2=4AAalpha,beta in R`

D

`sin (alpha+beta+gamma)=sinalpha+sinbeta+singammaAAa,b,gammainR`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \cos \alpha = \frac{1}{2} \left( x + \frac{1}{x} \right) \) and \( \cos \beta = \frac{1}{2} \left( y + \frac{1}{y} \right) \), we need to find \( \cos(\alpha - \beta) \). ### Step 1: Express \( \cos \alpha \) and \( \cos \beta \) Given: \[ \cos \alpha = \frac{1}{2} \left( x + \frac{1}{x} \right) = \frac{x^2 + 1}{2x} \] \[ \cos \beta = \frac{1}{2} \left( y + \frac{1}{y} \right) = \frac{y^2 + 1}{2y} \] ### Step 2: Use the cosine difference formula The formula for \( \cos(\alpha - \beta) \) is: \[ \cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \] ### Step 3: Calculate \( \cos \alpha \cos \beta \) Substituting the expressions for \( \cos \alpha \) and \( \cos \beta \): \[ \cos \alpha \cos \beta = \left( \frac{x^2 + 1}{2x} \right) \left( \frac{y^2 + 1}{2y} \right) = \frac{(x^2 + 1)(y^2 + 1)}{4xy} \] ### Step 4: Find \( \sin \alpha \) and \( \sin \beta \) To find \( \sin \alpha \) and \( \sin \beta \), we can use the identity \( \sin^2 \theta + \cos^2 \theta = 1 \). For \( \sin \alpha \): \[ \sin^2 \alpha = 1 - \cos^2 \alpha = 1 - \left( \frac{x^2 + 1}{2x} \right)^2 \] Calculating \( \cos^2 \alpha \): \[ \cos^2 \alpha = \frac{(x^2 + 1)^2}{4x^2} = \frac{x^4 + 2x^2 + 1}{4x^2} \] Thus, \[ \sin^2 \alpha = 1 - \frac{x^4 + 2x^2 + 1}{4x^2} = \frac{4x^2 - (x^4 + 2x^2 + 1)}{4x^2} = \frac{4x^2 - x^4 - 2x^2 - 1}{4x^2} = \frac{-x^4 + 2x^2 - 1}{4x^2} \] So, \[ \sin \alpha = \sqrt{\frac{-x^4 + 2x^2 - 1}{4x^2}} = \frac{\sqrt{-x^4 + 2x^2 - 1}}{2x} \] Similarly for \( \sin \beta \): \[ \sin^2 \beta = 1 - \cos^2 \beta = 1 - \left( \frac{y^2 + 1}{2y} \right)^2 \] Calculating \( \cos^2 \beta \): \[ \cos^2 \beta = \frac{(y^2 + 1)^2}{4y^2} = \frac{y^4 + 2y^2 + 1}{4y^2} \] Thus, \[ \sin^2 \beta = 1 - \frac{y^4 + 2y^2 + 1}{4y^2} = \frac{4y^2 - (y^4 + 2y^2 + 1)}{4y^2} = \frac{-y^4 + 2y^2 - 1}{4y^2} \] So, \[ \sin \beta = \sqrt{\frac{-y^4 + 2y^2 - 1}{4y^2}} = \frac{\sqrt{-y^4 + 2y^2 - 1}}{2y} \] ### Step 5: Substitute \( \sin \alpha \) and \( \sin \beta \) into the formula Now substituting into the cosine difference formula: \[ \cos(\alpha - \beta) = \frac{(x^2 + 1)(y^2 + 1)}{4xy} + \left( \frac{\sqrt{-x^4 + 2x^2 - 1}}{2x} \cdot \frac{\sqrt{-y^4 + 2y^2 - 1}}{2y} \right) \] ### Step 6: Final expression This gives us the final expression for \( \cos(\alpha - \beta) \): \[ \cos(\alpha - \beta) = \frac{(x^2 + 1)(y^2 + 1)}{4xy} + \frac{\sqrt{(-x^4 + 2x^2 - 1)(-y^4 + 2y^2 - 1)}}{4xy} \]

To solve the problem where \( \cos \alpha = \frac{1}{2} \left( x + \frac{1}{x} \right) \) and \( \cos \beta = \frac{1}{2} \left( y + \frac{1}{y} \right) \), we need to find \( \cos(\alpha - \beta) \). ### Step 1: Express \( \cos \alpha \) and \( \cos \beta \) Given: \[ \cos \alpha = \frac{1}{2} \left( x + \frac{1}{x} \right) = \frac{x^2 + 1}{2x} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|3 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Exercises|57 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

If cosalpha=1/2(x+1/x)a n dcosbeta=1/2(y+1/y),(x y >0); x , y ,alpha,beta in R then (a) sin(alpha+beta+gamma)=singammaAAgamma in R (b) cosalphacosbeta=1AAalpha,beta in R (c) (cosalpha+cosbeta)^2=4AAalpha,beta in R (d) sin(alpha+beta+gamma)=sinalpha+sinbeta+singamma AAa , b ,gamma in R

If sinalpha=1/2 and cosbeta=1/2 , then the value of (alpha+beta) is

If cosalpha+cosbeta=0=sinalpha+sinbeta, then cos2alpha+cos2beta is equal to (a) -2"sin"(alpha+beta) (b) -2cos(alpha+beta) (c) 2"sin"(alpha+beta) (d) 2"cos"(alpha+beta)

If tan alpha=(1+2^(-x))^(-1), tan beta=(1+2^(x+1))^(-1) then alpha+beta equals

If cos alpha=(2cos beta-1)/(2-cos beta) then tan (alpha/2) is equal to

If 3cosalpha=2cos(alpha-2beta), then tan(alpha-beta) tanbeta= (A) 5 (B) -5 (C) 1/5 (D) -1/5

If (cosalpha)/(cosbeta)=m and (cosalpha)/(sinbeta)=n show that (m^2+n^2)cos^2beta=n^2

f(alpha,beta) = cos^2(alpha)+ cos^2(alpha+beta)- 2 cosalpha cosbeta cos(alpha+beta) is

If the lines x(sinalpha+sinbeta)-ysin(alpha-beta)=3 and x(cosalpha+cosbeta)+ycos(alpha-beta)=5 are perpendicular then sin2alpha+sin2beta is equal to:

If (cosalpha)/(sinbeta)=n and (cosalpha)/(cosbeta)=m , then find cos^(2)beta ?