Home
Class 12
MATHS
Solve (1)/(x-2)+(1)/(x-1) gt (1)/(x)....

Solve `(1)/(x-2)+(1)/(x-1) gt (1)/(x)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \(\frac{1}{x-2} + \frac{1}{x-1} > \frac{1}{x}\), we can follow these steps: ### Step 1: Rearranging the Inequality First, we will move \(\frac{1}{x}\) to the left side of the inequality: \[ \frac{1}{x-2} + \frac{1}{x-1} - \frac{1}{x} > 0 \] ### Step 2: Finding a Common Denominator The common denominator for the fractions is \((x-2)(x-1)x\). We can rewrite the left side: \[ \frac{(x)(1) + (x)(1) - ((x-2)(x-1))}{(x-2)(x-1)x} > 0 \] This simplifies to: \[ \frac{x + x - (x^2 - 3x + 2)}{(x-2)(x-1)x} > 0 \] ### Step 3: Simplifying the Numerator Now, simplify the numerator: \[ 2x - (x^2 - 3x + 2) = 2x - x^2 + 3x - 2 = -x^2 + 5x - 2 \] So the inequality becomes: \[ \frac{-x^2 + 5x - 2}{(x-2)(x-1)x} > 0 \] ### Step 4: Factoring the Numerator Next, we can factor the quadratic \(-x^2 + 5x - 2\): \[ -x^2 + 5x - 2 = -(x^2 - 5x + 2) \] To factor \(x^2 - 5x + 2\), we can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{5 \pm \sqrt{25 - 8}}{2} = \frac{5 \pm \sqrt{17}}{2} \] Let \(r_1 = \frac{5 - \sqrt{17}}{2}\) and \(r_2 = \frac{5 + \sqrt{17}}{2}\). ### Step 5: Setting Up the Number Line Now we have critical points at \(0\), \(1\), \(2\), \(r_1\), and \(r_2\). We will test intervals around these points to determine where the expression is positive. ### Step 6: Testing Intervals 1. **Interval \((-∞, 0)\)**: Choose \(x = -1\): \[ \frac{-(-1)^2 + 5(-1) - 2}{(-1-2)(-1-1)(-1)} = \frac{-1 - 5 - 2}{(-3)(-2)(-1)} < 0 \] 2. **Interval \((0, r_1)\)**: Choose \(x = 1\): \[ \frac{-(1)^2 + 5(1) - 2}{(1-2)(1-1)(1)} = \text{undefined} \] 3. **Interval \((r_1, 1)\)**: Choose \(x = 0.5\): \[ \frac{-0.25 + 2.5 - 2}{(-1.5)(-0.5)(0.5)} > 0 \] 4. **Interval \((1, r_2)\)**: Choose \(x = 1.5\): \[ \frac{-(1.5)^2 + 5(1.5) - 2}{(1.5-2)(1.5-1)(1.5)} < 0 \] 5. **Interval \((r_2, 2)\)**: Choose \(x = 1.8\): \[ \frac{-(1.8)^2 + 5(1.8) - 2}{(1.8-2)(1.8-1)(1.8)} > 0 \] 6. **Interval \((2, ∞)\)**: Choose \(x = 3\): \[ \frac{-(3)^2 + 5(3) - 2}{(3-2)(3-1)(3)} > 0 \] ### Step 7: Conclusion The solution to the inequality is: \[ x \in \left(0, \frac{5 - \sqrt{17}}{2}\right) \cup \left(2, \infty\right) \]

To solve the inequality \(\frac{1}{x-2} + \frac{1}{x-1} > \frac{1}{x}\), we can follow these steps: ### Step 1: Rearranging the Inequality First, we will move \(\frac{1}{x}\) to the left side of the inequality: \[ \frac{1}{x-2} + \frac{1}{x-1} - \frac{1}{x} > 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Jee Advanced (Single|1 Videos

Similar Questions

Explore conceptually related problems

Solve : (x-1)/(x-2) gt1

Solve (x-1)(x-2)(1-2x) gt 0 .

Solve (x-1 )(x-2)(1-2x) gt 0

Solve log_(2).(x-1)/(x-2) gt 0 .

Solve (x-1)(x-2)(1-2x)> 0.

|(2x+1)/(x-1)| gt 2

Solve : (x)/(x-1)+(x-1)/(x)=2(1)/(2) .

Solve (|x-1|)/(x+2) gt 1

Solve (x-2)/(x+2)gt(2x-3)/(4x-1)

Solve (3)/(7)-(x)/(3)gt(-1)/(4),x inN

CENGAGE ENGLISH-INEQUALITIES AND MODULUS-Single correct Answer
  1. Solve (1)/(x-2)+(1)/(x-1) gt (1)/(x).

    Text Solution

    |

  2. If f(x)=ax^(2)+bx+c and f(-1) ge -4, f(1) le 0 and f(3) ge 5, then the...

    Text Solution

    |

  3. The complete set of values of x for which (x^(3)(x-1)^(2)(x+4))/((x+...

    Text Solution

    |

  4. The set of all values of x for which ((x+1)(x-3)^(2)(x-5)(x-4)^(3)(x...

    Text Solution

    |

  5. The solution set of inequality ((e^(x)-1)(2x-3)(x^(2)+x+2))/((sinx-...

    Text Solution

    |

  6. The solution set of inequality (1)/(2^(x)-1) gt (1)/(1-2^(x-1)) is

    Text Solution

    |

  7. Let A={x:x^(2)-4x+3 lt 0,x in R } B={x: 2^(1-x)+p le 0 , x^(2)-2(p+7)...

    Text Solution

    |

  8. Let a, b gt 0 satisfies a^(3)+b^(3)=a-b. Then

    Text Solution

    |

  9. The number of integers satisfying |2x-3|+|x+5| le |x-8| is

    Text Solution

    |

  10. Which of the following is not the solution of |2x+5|-|x-3| ge |x+8| ...

    Text Solution

    |

  11. The number of integral values of x satisfying the equation |x-|x-4||=4...

    Text Solution

    |

  12. The solution of |2x-3| lt |x+2| is

    Text Solution

    |

  13. The solution set of the inequation |(1)/(x)-2| lt 4, is

    Text Solution

    |

  14. The solution of |x+(1)/(x)| gt 2 is

    Text Solution

    |

  15. The solution of the inequality (|x+2|-|x|)/(sqrt(8-x^(3))) ge 0 is

    Text Solution

    |

  16. If |(12x)/(4x^(2)+9)| le 1, then

    Text Solution

    |

  17. Let a,b,c,d be real numbers such that |a-b|=2, |b-c|=3, |c-d|=4 Then t...

    Text Solution

    |

  18. The number of solutions of the equation sqrt(x^(2))-sqrt((x-1)^(2))+...

    Text Solution

    |

  19. If |x^2- 2x- 8| + |x^2+ x -2|= 3|x +2|, then the set of all real valu...

    Text Solution

    |

  20. The number of integers satisfying the equation |x|+|(4-x^(2))/(x)|=|(4...

    Text Solution

    |

  21. The equation |2ax-3|+|ax+1|+|5-ax|=(1)/(2) possesses

    Text Solution

    |