Home
Class 12
MATHS
(sqrt(8+2x-x^2)>6-3x)...

`(sqrt(8+2x-x^2)>6-3x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \sqrt{8 + 2x - x^2} > 6 - 3x \), we will follow these steps: ### Step 1: Determine the domain of the square root The expression under the square root must be non-negative: \[ 8 + 2x - x^2 \geq 0 \] Rearranging gives: \[ -x^2 + 2x + 8 \geq 0 \] This can be rewritten as: \[ -x^2 + 2x + 8 = -(x^2 - 2x - 8) \] To find the roots, we can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = -2, c = -8 \): \[ x = \frac{2 \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot (-8)}}{2 \cdot 1} = \frac{2 \pm \sqrt{4 + 32}}{2} = \frac{2 \pm \sqrt{36}}{2} = \frac{2 \pm 6}{2} \] Calculating the roots: \[ x = \frac{8}{2} = 4 \quad \text{and} \quad x = \frac{-4}{2} = -2 \] Thus, the roots are \( x = -2 \) and \( x = 4 \). ### Step 2: Analyze the sign of the quadratic The quadratic \( -(x - 4)(x + 2) \) is a downward-opening parabola. The expression is non-negative between the roots: \[ -2 \leq x \leq 4 \] ### Step 3: Solve the inequality Now we will consider the inequality: \[ \sqrt{8 + 2x - x^2} > 6 - 3x \] Squaring both sides (valid since both sides are non-negative in the domain): \[ 8 + 2x - x^2 > (6 - 3x)^2 \] Expanding the right side: \[ 8 + 2x - x^2 > 36 - 36x + 9x^2 \] Rearranging gives: \[ 0 > 10x^2 - 38x + 28 \] This simplifies to: \[ 10x^2 - 38x + 28 < 0 \] ### Step 4: Factor the quadratic To factor \( 10x^2 - 38x + 28 \), we can use the quadratic formula again: \[ x = \frac{-(-38) \pm \sqrt{(-38)^2 - 4 \cdot 10 \cdot 28}}{2 \cdot 10} = \frac{38 \pm \sqrt{1444 - 1120}}{20} = \frac{38 \pm \sqrt{324}}{20} = \frac{38 \pm 18}{20} \] Calculating the roots: \[ x = \frac{56}{20} = \frac{14}{5} \quad \text{and} \quad x = \frac{20}{20} = 1 \] ### Step 5: Determine the intervals The quadratic \( 10x^2 - 38x + 28 \) is negative between its roots: \[ 1 < x < \frac{14}{5} \] ### Step 6: Find the intersection with the domain We need to find the intersection of the intervals: 1. From the square root: \( -2 \leq x \leq 4 \) 2. From the quadratic: \( 1 < x < \frac{14}{5} \) The intersection is: \[ 1 < x < \frac{14}{5} \] ### Step 7: Final solution Thus, the solution to the inequality \( \sqrt{8 + 2x - x^2} > 6 - 3x \) is: \[ x \in (1, \frac{14}{5}) \]

To solve the inequality \( \sqrt{8 + 2x - x^2} > 6 - 3x \), we will follow these steps: ### Step 1: Determine the domain of the square root The expression under the square root must be non-negative: \[ 8 + 2x - x^2 \geq 0 \] Rearranging gives: ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Jee Advanced (Single|1 Videos

Similar Questions

Explore conceptually related problems

Integrate the functions 1/(sqrt(8+3x-x^2))

Domain of (sqrt(x^(2)-4x+3)+1) log_(5)""((x)/(5))+(1)/(x)(sqrt(8x-2x^(2)-6)+1) le 1 is

Differentiate w.r.t x : (x)/(2)-(2)/(x)+sqrt(x)+(3)/sqrt(x)+x^(2)-3^(x)+(2)/(3)x^(6)

Evaluate: int1/(sqrt(8+3x-x^2))\ dx

Evaluate the following: lim_(xrarr2)(x^2-4)/(sqrt(3x-2)-sqrt(6-x))

Evaluate int ((""^(3)sqrt(x+sqrt(2-x ^(2))))(""^(6)sqrt(1-xsqrt(2-x ^(2))))dx)/(""^(3) sqrt(1-x ^(2))), x in (0,1):

lim_(x to oo ) (sqrt(3x^(2)-1)-sqrt(2x^(2)-3))/(4x+3)

The domain of the function f(x)=sqrt(x^(2)-5x+6)+sqrt(2x+8-x^(2)) , is

THe value of x which satisfy the equation (sqrt(5x^2-8x+3))-sqrt((5x^2-9x+4))=sqrt((2x^2-2x))-sqrt((2x^2-3x+1)) is

The domain of the function f(x)=sqrt(-log_(0.3) (x-1))/(sqrt(-x^(2)+2x+8))" is"

CENGAGE ENGLISH-INEQUALITIES AND MODULUS-Single correct Answer
  1. (sqrt(8+2x-x^2)>6-3x)

    Text Solution

    |

  2. If f(x)=ax^(2)+bx+c and f(-1) ge -4, f(1) le 0 and f(3) ge 5, then the...

    Text Solution

    |

  3. The complete set of values of x for which (x^(3)(x-1)^(2)(x+4))/((x+...

    Text Solution

    |

  4. The set of all values of x for which ((x+1)(x-3)^(2)(x-5)(x-4)^(3)(x...

    Text Solution

    |

  5. The solution set of inequality ((e^(x)-1)(2x-3)(x^(2)+x+2))/((sinx-...

    Text Solution

    |

  6. The solution set of inequality (1)/(2^(x)-1) gt (1)/(1-2^(x-1)) is

    Text Solution

    |

  7. Let A={x:x^(2)-4x+3 lt 0,x in R } B={x: 2^(1-x)+p le 0 , x^(2)-2(p+7)...

    Text Solution

    |

  8. Let a, b gt 0 satisfies a^(3)+b^(3)=a-b. Then

    Text Solution

    |

  9. The number of integers satisfying |2x-3|+|x+5| le |x-8| is

    Text Solution

    |

  10. Which of the following is not the solution of |2x+5|-|x-3| ge |x+8| ...

    Text Solution

    |

  11. The number of integral values of x satisfying the equation |x-|x-4||=4...

    Text Solution

    |

  12. The solution of |2x-3| lt |x+2| is

    Text Solution

    |

  13. The solution set of the inequation |(1)/(x)-2| lt 4, is

    Text Solution

    |

  14. The solution of |x+(1)/(x)| gt 2 is

    Text Solution

    |

  15. The solution of the inequality (|x+2|-|x|)/(sqrt(8-x^(3))) ge 0 is

    Text Solution

    |

  16. If |(12x)/(4x^(2)+9)| le 1, then

    Text Solution

    |

  17. Let a,b,c,d be real numbers such that |a-b|=2, |b-c|=3, |c-d|=4 Then t...

    Text Solution

    |

  18. The number of solutions of the equation sqrt(x^(2))-sqrt((x-1)^(2))+...

    Text Solution

    |

  19. If |x^2- 2x- 8| + |x^2+ x -2|= 3|x +2|, then the set of all real valu...

    Text Solution

    |

  20. The number of integers satisfying the equation |x|+|(4-x^(2))/(x)|=|(4...

    Text Solution

    |

  21. The equation |2ax-3|+|ax+1|+|5-ax|=(1)/(2) possesses

    Text Solution

    |