Home
Class 12
MATHS
The complete set of values of x for whic...

The complete set of values of `x` for which
`(x^(3)(x-1)^(2)(x+4))/((x+1)(x-3)) ge 0` is

A

`(-oo,-4] uu (-1,0] uu (3,oo) uu {1}`

B

`(-oo,-4] uu (-1,0] uu (3,oo) uu {-1}`

C

`[-4,-1) uu [0,1) uu (3,oo) `

D

`[-4,-1) uu [0,1] uu (3,oo) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \[ \frac{x^3 (x-1)^2 (x+4)}{(x+1)(x-3)} \geq 0, \] we will follow these steps: ### Step 1: Identify the critical points The critical points occur where the numerator or denominator is zero. - **Numerator**: \(x^3 (x-1)^2 (x+4) = 0\) gives: - \(x^3 = 0 \Rightarrow x = 0\) - \((x-1)^2 = 0 \Rightarrow x = 1\) - \(x+4 = 0 \Rightarrow x = -4\) - **Denominator**: \((x+1)(x-3) = 0\) gives: - \(x+1 = 0 \Rightarrow x = -1\) - \(x-3 = 0 \Rightarrow x = 3\) So, the critical points are \(x = -4, -1, 0, 1, 3\). ### Step 2: Create a number line We will plot the critical points on a number line: \[ -\infty \quad -4 \quad -1 \quad 0 \quad 1 \quad 3 \quad +\infty \] ### Step 3: Test intervals We will test the sign of the expression in each of the intervals determined by the critical points: 1. **Interval \((- \infty, -4)\)**: Choose \(x = -5\) \[ \frac{(-5)^3 (-5-1)^2 (-5+4)}{(-5+1)(-5-3)} = \frac{-125 \cdot 36 \cdot (-1)}{(-4)(-8)} > 0 \] 2. **Interval \((-4, -1)\)**: Choose \(x = -2\) \[ \frac{(-2)^3 (-2-1)^2 (-2+4)}{(-2+1)(-2-3)} = \frac{-8 \cdot 9 \cdot 2}{(-1)(-5)} < 0 \] 3. **Interval \((-1, 0)\)**: Choose \(x = -0.5\) \[ \frac{(-0.5)^3 (-0.5-1)^2 (-0.5+4)}{(-0.5+1)(-0.5-3)} = \frac{-0.125 \cdot 2.25 \cdot 3.5}{0.5 \cdot (-3.5)} > 0 \] 4. **Interval \((0, 1)\)**: Choose \(x = 0.5\) \[ \frac{(0.5)^3 (0.5-1)^2 (0.5+4)}{(0.5+1)(0.5-3)} = \frac{0.125 \cdot 0.25 \cdot 4.5}{1.5 \cdot (-2.5)} < 0 \] 5. **Interval \((1, 3)\)**: Choose \(x = 2\) \[ \frac{(2)^3 (2-1)^2 (2+4)}{(2+1)(2-3)} = \frac{8 \cdot 1 \cdot 6}{3 \cdot (-1)} < 0 \] 6. **Interval \((3, +\infty)\)**: Choose \(x = 4\) \[ \frac{(4)^3 (4-1)^2 (4+4)}{(4+1)(4-3)} = \frac{64 \cdot 9 \cdot 8}{5 \cdot 1} > 0 \] ### Step 4: Compile the results From the tests, we have: - Positive in \((- \infty, -4)\) - Negative in \((-4, -1)\) - Positive in \((-1, 0)\) - Negative in \((0, 1)\) - Negative in \((1, 3)\) - Positive in \((3, +\infty)\) ### Step 5: Include critical points Now we need to check the critical points: - At \(x = -4\): The expression is \(0\) (included). - At \(x = -1\): The expression is undefined (not included). - At \(x = 0\): The expression is \(0\) (included). - At \(x = 1\): The expression is \(0\) (included). - At \(x = 3\): The expression is undefined (not included). ### Final Solution The complete set of values of \(x\) for which the inequality holds is: \[ (-\infty, -4] \cup (-1, 0] \cup [1, 3) \cup (3, +\infty) \]

To solve the inequality \[ \frac{x^3 (x-1)^2 (x+4)}{(x+1)(x-3)} \geq 0, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Jee Advanced (Single|1 Videos

Similar Questions

Explore conceptually related problems

The complete set of values of x for which 2 tan^(-1)x+cos^(-1)((1-x^(2))/(1+x^(2))) is independent of x is :

The set of all values of x for which ((x+1)(x-3)^(2)(x-5)(x-4)^(3)(x-2))/(x) lt 0

find the value of x for which f(x) = ((2x-1)(x-1)^(2)(x-2)^(2))/((x-4)^(2))ge 0.

The values of x for which (x-1)/(3x+4) lt (x-3)/(3x-2)

The complete set of values of a for which the function f(x)=tan^(-1)(x^(2)-18x +a)gt 0 AA x in R is

Complete set of real values of x for which log_((2x-3))(x^(2)-5x-6) is defined is :

Find the set of values of x for which (tan3x-tan2x)/(1+tan3x.tan2x)=1 .

solve f(x) = ((x-1)(2-x))/((x-3))ge 0.

The complete set f values of ' a ' for which (a^2-1)x^2+2(a-1)x+2 is positive for any x are . a.a≥1 b. a ≤ 1 c. a >-3 d. a 1

Find the solution set of ((x-1)(x-2)^(2)(x+4))/((x+2)(x-3)) ge 0

CENGAGE ENGLISH-INEQUALITIES AND MODULUS-Single correct Answer
  1. If f(x)=ax^(2)+bx+c and f(-1) ge -4, f(1) le 0 and f(3) ge 5, then the...

    Text Solution

    |

  2. The complete set of values of x for which (x^(3)(x-1)^(2)(x+4))/((x+...

    Text Solution

    |

  3. The set of all values of x for which ((x+1)(x-3)^(2)(x-5)(x-4)^(3)(x...

    Text Solution

    |

  4. The solution set of inequality ((e^(x)-1)(2x-3)(x^(2)+x+2))/((sinx-...

    Text Solution

    |

  5. The solution set of inequality (1)/(2^(x)-1) gt (1)/(1-2^(x-1)) is

    Text Solution

    |

  6. Let A={x:x^(2)-4x+3 lt 0,x in R } B={x: 2^(1-x)+p le 0 , x^(2)-2(p+7)...

    Text Solution

    |

  7. Let a, b gt 0 satisfies a^(3)+b^(3)=a-b. Then

    Text Solution

    |

  8. The number of integers satisfying |2x-3|+|x+5| le |x-8| is

    Text Solution

    |

  9. Which of the following is not the solution of |2x+5|-|x-3| ge |x+8| ...

    Text Solution

    |

  10. The number of integral values of x satisfying the equation |x-|x-4||=4...

    Text Solution

    |

  11. The solution of |2x-3| lt |x+2| is

    Text Solution

    |

  12. The solution set of the inequation |(1)/(x)-2| lt 4, is

    Text Solution

    |

  13. The solution of |x+(1)/(x)| gt 2 is

    Text Solution

    |

  14. The solution of the inequality (|x+2|-|x|)/(sqrt(8-x^(3))) ge 0 is

    Text Solution

    |

  15. If |(12x)/(4x^(2)+9)| le 1, then

    Text Solution

    |

  16. Let a,b,c,d be real numbers such that |a-b|=2, |b-c|=3, |c-d|=4 Then t...

    Text Solution

    |

  17. The number of solutions of the equation sqrt(x^(2))-sqrt((x-1)^(2))+...

    Text Solution

    |

  18. If |x^2- 2x- 8| + |x^2+ x -2|= 3|x +2|, then the set of all real valu...

    Text Solution

    |

  19. The number of integers satisfying the equation |x|+|(4-x^(2))/(x)|=|(4...

    Text Solution

    |

  20. The equation |2ax-3|+|ax+1|+|5-ax|=(1)/(2) possesses

    Text Solution

    |