Home
Class 12
MATHS
The set of all values of x for which (...

The set of all values of `x` for which
`((x+1)(x-3)^(2)(x-5)(x-4)^(3)(x-2))/(x) lt 0`

A

`(-oo,-1) uu (0,2) uu (4,5)`

B

`(-1,0) uu (2,4) uu (5,oo)`

C

`(-1,0) uu (2,3) uu (4,5)`

D

`(-oo,-1) uu (0,2) uu [3,5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \[ \frac{(x+1)(x-3)^{2}(x-5)(x-4)^{3}(x-2)}{x} < 0, \] we will follow these steps: ### Step 1: Identify the critical points The critical points occur when the numerator or denominator is zero. We find these points by setting each factor in the numerator and denominator to zero: - \(x + 1 = 0 \Rightarrow x = -1\) - \(x - 3 = 0 \Rightarrow x = 3\) (note that this factor has an even exponent) - \(x - 5 = 0 \Rightarrow x = 5\) - \(x - 4 = 0 \Rightarrow x = 4\) (note that this factor has an odd exponent) - \(x - 2 = 0 \Rightarrow x = 2\) - \(x = 0\) (denominator) Thus, the critical points are: \(-1, 0, 2, 3, 4, 5\). ### Step 2: Create a number line We will place the critical points on a number line: \[ -\infty \quad -1 \quad 0 \quad 2 \quad 3 \quad 4 \quad 5 \quad +\infty \] ### Step 3: Test intervals We will test the sign of the expression in each interval defined by the critical points. The intervals are: 1. \((- \infty, -1)\) 2. \((-1, 0)\) 3. \((0, 2)\) 4. \((2, 3)\) 5. \((3, 4)\) 6. \((4, 5)\) 7. \((5, +\infty)\) ### Step 4: Determine the sign in each interval - **Interval \((- \infty, -1)\)**: Choose \(x = -2\) \[ \frac{(-2+1)(-2-3)^{2}(-2-5)(-2-4)^{3}(-2-2)}{-2} < 0 \quad \text{(negative)} \] - **Interval \((-1, 0)\)**: Choose \(x = -0.5\) \[ \frac{(-0.5+1)(-0.5-3)^{2}(-0.5-5)(-0.5-4)^{3}(-0.5-2)}{-0.5} > 0 \quad \text{(positive)} \] - **Interval \((0, 2)\)**: Choose \(x = 1\) \[ \frac{(1+1)(1-3)^{2}(1-5)(1-4)^{3}(1-2)}{1} < 0 \quad \text{(negative)} \] - **Interval \((2, 3)\)**: Choose \(x = 2.5\) \[ \frac{(2.5+1)(2.5-3)^{2}(2.5-5)(2.5-4)^{3}(2.5-2)}{2.5} > 0 \quad \text{(positive)} \] - **Interval \((3, 4)\)**: Choose \(x = 3.5\) \[ \frac{(3.5+1)(3.5-3)^{2}(3.5-5)(3.5-4)^{3}(3.5-2)}{3.5} < 0 \quad \text{(negative)} \] - **Interval \((4, 5)\)**: Choose \(x = 4.5\) \[ \frac{(4.5+1)(4.5-3)^{2}(4.5-5)(4.5-4)^{3}(4.5-2)}{4.5} > 0 \quad \text{(positive)} \] - **Interval \((5, +\infty)\)**: Choose \(x = 6\) \[ \frac{(6+1)(6-3)^{2}(6-5)(6-4)^{3}(6-2)}{6} > 0 \quad \text{(positive)} \] ### Step 5: Compile the results The intervals where the expression is negative are: - \((- \infty, -1)\) - \((0, 2)\) - \((3, 4)\) ### Step 6: Write the solution Thus, the solution to the inequality is: \[ x \in (-\infty, -1) \cup (0, 2) \cup (3, 4) \]

To solve the inequality \[ \frac{(x+1)(x-3)^{2}(x-5)(x-4)^{3}(x-2)}{x} < 0, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Jee Advanced (Single|1 Videos

Similar Questions

Explore conceptually related problems

The values of x for which (x-1)/(3x+4) lt (x-3)/(3x-2)

The complete set of values of x for which (x^(3)(x-1)^(2)(x+4))/((x+1)(x-3)) ge 0 is

The range of values of x for which the inequality (x-1)/(4x+5) lt (x-3)/(4x-3) holds is

Complete set of real values of x for which log_((2x-3))(x^(2)-5x-6) is defined is :

The values of 'a' for which int_0^(a) (3x^(2)+4x-5)dx lt a^(3)-2 are

Find the solution set of ((x-1)(x-2)(x-3)^(2))/((x-4)^(2)(x-5)^(3)) lt 0

Solve (x(3-4x)(x+1))/(2x-5)lt 0

Solve (x(3-4x)(x+1))/(2x-5)lt 0

The set of all values of x satisfying the inequations (x-1)^(3) (x+1) lt 0 is

The set of values of 'a' for which ax^(2)-(4-2a)x-8lt0 for exactly three integral values of x, is

CENGAGE ENGLISH-INEQUALITIES AND MODULUS-Single correct Answer
  1. If f(x)=ax^(2)+bx+c and f(-1) ge -4, f(1) le 0 and f(3) ge 5, then the...

    Text Solution

    |

  2. The complete set of values of x for which (x^(3)(x-1)^(2)(x+4))/((x+...

    Text Solution

    |

  3. The set of all values of x for which ((x+1)(x-3)^(2)(x-5)(x-4)^(3)(x...

    Text Solution

    |

  4. The solution set of inequality ((e^(x)-1)(2x-3)(x^(2)+x+2))/((sinx-...

    Text Solution

    |

  5. The solution set of inequality (1)/(2^(x)-1) gt (1)/(1-2^(x-1)) is

    Text Solution

    |

  6. Let A={x:x^(2)-4x+3 lt 0,x in R } B={x: 2^(1-x)+p le 0 , x^(2)-2(p+7)...

    Text Solution

    |

  7. Let a, b gt 0 satisfies a^(3)+b^(3)=a-b. Then

    Text Solution

    |

  8. The number of integers satisfying |2x-3|+|x+5| le |x-8| is

    Text Solution

    |

  9. Which of the following is not the solution of |2x+5|-|x-3| ge |x+8| ...

    Text Solution

    |

  10. The number of integral values of x satisfying the equation |x-|x-4||=4...

    Text Solution

    |

  11. The solution of |2x-3| lt |x+2| is

    Text Solution

    |

  12. The solution set of the inequation |(1)/(x)-2| lt 4, is

    Text Solution

    |

  13. The solution of |x+(1)/(x)| gt 2 is

    Text Solution

    |

  14. The solution of the inequality (|x+2|-|x|)/(sqrt(8-x^(3))) ge 0 is

    Text Solution

    |

  15. If |(12x)/(4x^(2)+9)| le 1, then

    Text Solution

    |

  16. Let a,b,c,d be real numbers such that |a-b|=2, |b-c|=3, |c-d|=4 Then t...

    Text Solution

    |

  17. The number of solutions of the equation sqrt(x^(2))-sqrt((x-1)^(2))+...

    Text Solution

    |

  18. If |x^2- 2x- 8| + |x^2+ x -2|= 3|x +2|, then the set of all real valu...

    Text Solution

    |

  19. The number of integers satisfying the equation |x|+|(4-x^(2))/(x)|=|(4...

    Text Solution

    |

  20. The equation |2ax-3|+|ax+1|+|5-ax|=(1)/(2) possesses

    Text Solution

    |