Home
Class 12
MATHS
Solve : (|x-1|-3)(|x+2)-5) lt 0....

Solve : `(|x-1|-3)(|x+2)-5) lt 0`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \((|x-1|-3)(|x+2|-5) < 0\), we will analyze the expression step by step. ### Step 1: Identify critical points The critical points occur where the expressions inside the absolute values equal zero or where the entire expression equals zero. 1. For \(|x-1| = 3\): - \(x - 1 = 3 \Rightarrow x = 4\) - \(x - 1 = -3 \Rightarrow x = -2\) 2. For \(|x+2| = 5\): - \(x + 2 = 5 \Rightarrow x = 3\) - \(x + 2 = -5 \Rightarrow x = -7\) The critical points are \(x = -7, -2, 3, 4\). ### Step 2: Test intervals We will test the intervals defined by these critical points: 1. \((- \infty, -7)\) 2. \((-7, -2)\) 3. \((-2, 3)\) 4. \((3, 4)\) 5. \((4, \infty)\) ### Step 3: Evaluate the sign of the expression in each interval 1. **Interval \((- \infty, -7)\)**: - Choose \(x = -8\): \[ (|-8-1|-3)(|-8+2|-5) = (|-9|-3)(|-6|-5) = (9-3)(6-5) = 6 > 0 \] 2. **Interval \((-7, -2)\)**: - Choose \(x = -5\): \[ (|-5-1|-3)(|-5+2|-5) = (|-6|-3)(|-3|-5) = (6-3)(3-5) = 3 \cdot (-2) = -6 < 0 \] 3. **Interval \((-2, 3)\)**: - Choose \(x = 0\): \[ (|0-1|-3)(|0+2|-5) = (|-1|-3)(|2|-5) = (1-3)(2-5) = (-2)(-3) = 6 > 0 \] 4. **Interval \((3, 4)\)**: - Choose \(x = 3.5\): \[ (|3.5-1|-3)(|3.5+2|-5) = (|2.5|-3)(|5.5|-5) = (2.5-3)(5.5-5) = (-0.5)(0.5) = -0.25 < 0 \] 5. **Interval \((4, \infty)\)**: - Choose \(x = 5\): \[ (|5-1|-3)(|5+2|-5) = (|4|-3)(|7|-5) = (4-3)(7-5) = 1 \cdot 2 = 2 > 0 \] ### Step 4: Combine results The expression is negative in the intervals \((-7, -2)\) and \((3, 4)\). ### Final Solution Thus, the solution to the inequality \((|x-1|-3)(|x+2|-5) < 0\) is: \[ x \in (-7, -2) \cup (3, 4) \]

To solve the inequality \((|x-1|-3)(|x+2|-5) < 0\), we will analyze the expression step by step. ### Step 1: Identify critical points The critical points occur where the expressions inside the absolute values equal zero or where the entire expression equals zero. 1. For \(|x-1| = 3\): - \(x - 1 = 3 \Rightarrow x = 4\) - \(x - 1 = -3 \Rightarrow x = -2\) ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Jee Advanced (Single|1 Videos

Similar Questions

Explore conceptually related problems

Solve : |x+ 2| lt3

Solve: x(e^x-1)(x+2)(x-3)^2lt=0.

Solve: 0 lt |x-1|lt3

Solve : (x+4)/(x-2)-(2)/(x+1) lt 0

Solve log_(x+3)(x^(2)-x) lt 1 .

Solve || x-1|-2 | lt 5

Solve : (1)/(x) lt (2)/(x-2)

Solve ||x-2|-3|lt 5

Solve ||x-1|-5|lt=2

Solve : (1)/(x-3)lt 0

CENGAGE ENGLISH-INEQUALITIES AND MODULUS-Single correct Answer
  1. Solve : (|x-1|-3)(|x+2)-5) lt 0.

    Text Solution

    |

  2. If f(x)=ax^(2)+bx+c and f(-1) ge -4, f(1) le 0 and f(3) ge 5, then the...

    Text Solution

    |

  3. The complete set of values of x for which (x^(3)(x-1)^(2)(x+4))/((x+...

    Text Solution

    |

  4. The set of all values of x for which ((x+1)(x-3)^(2)(x-5)(x-4)^(3)(x...

    Text Solution

    |

  5. The solution set of inequality ((e^(x)-1)(2x-3)(x^(2)+x+2))/((sinx-...

    Text Solution

    |

  6. The solution set of inequality (1)/(2^(x)-1) gt (1)/(1-2^(x-1)) is

    Text Solution

    |

  7. Let A={x:x^(2)-4x+3 lt 0,x in R } B={x: 2^(1-x)+p le 0 , x^(2)-2(p+7)...

    Text Solution

    |

  8. Let a, b gt 0 satisfies a^(3)+b^(3)=a-b. Then

    Text Solution

    |

  9. The number of integers satisfying |2x-3|+|x+5| le |x-8| is

    Text Solution

    |

  10. Which of the following is not the solution of |2x+5|-|x-3| ge |x+8| ...

    Text Solution

    |

  11. The number of integral values of x satisfying the equation |x-|x-4||=4...

    Text Solution

    |

  12. The solution of |2x-3| lt |x+2| is

    Text Solution

    |

  13. The solution set of the inequation |(1)/(x)-2| lt 4, is

    Text Solution

    |

  14. The solution of |x+(1)/(x)| gt 2 is

    Text Solution

    |

  15. The solution of the inequality (|x+2|-|x|)/(sqrt(8-x^(3))) ge 0 is

    Text Solution

    |

  16. If |(12x)/(4x^(2)+9)| le 1, then

    Text Solution

    |

  17. Let a,b,c,d be real numbers such that |a-b|=2, |b-c|=3, |c-d|=4 Then t...

    Text Solution

    |

  18. The number of solutions of the equation sqrt(x^(2))-sqrt((x-1)^(2))+...

    Text Solution

    |

  19. If |x^2- 2x- 8| + |x^2+ x -2|= 3|x +2|, then the set of all real valu...

    Text Solution

    |

  20. The number of integers satisfying the equation |x|+|(4-x^(2))/(x)|=|(4...

    Text Solution

    |

  21. The equation |2ax-3|+|ax+1|+|5-ax|=(1)/(2) possesses

    Text Solution

    |