Home
Class 12
MATHS
If |x^2- 2x- 8| + |x^2+ x -2|= 3|x +2|,...

If `|x^2- 2x- 8| + |x^2+ x -2|= 3|x +2|`, then the set of all real values of x is

A

`[1,4] uu {-2}`

B

`[1,4]`

C

`[-2,1] uu [4,oo)`

D

`(-oo,-2] uu [1,4]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( |x^2 - 2x - 8| + |x^2 + x - 2| = 3|x + 2| \), we will break it down step by step. ### Step 1: Identify the critical points First, we need to find the points where each expression inside the absolute values equals zero. 1. **For \( |x^2 - 2x - 8| \)**: \[ x^2 - 2x - 8 = 0 \implies (x - 4)(x + 2) = 0 \implies x = 4 \text{ or } x = -2 \] 2. **For \( |x^2 + x - 2| \)**: \[ x^2 + x - 2 = 0 \implies (x - 1)(x + 2) = 0 \implies x = 1 \text{ or } x = -2 \] So, the critical points are \( x = -2, 1, 4 \). ### Step 2: Test intervals defined by critical points We will test the intervals defined by these critical points: \( (-\infty, -2) \), \( (-2, 1) \), \( (1, 4) \), and \( (4, \infty) \). #### Interval 1: \( (-\infty, -2) \) Choose \( x = -3 \): \[ |(-3)^2 - 2(-3) - 8| + |(-3)^2 + (-3) - 2| = |9 + 6 - 8| + |9 - 3 - 2| = |7| + |4| = 7 + 4 = 11 \] \[ 3|-3 + 2| = 3|-1| = 3 \] Not equal, so no solutions in this interval. #### Interval 2: \( (-2, 1) \) Choose \( x = 0 \): \[ |0^2 - 2(0) - 8| + |0^2 + 0 - 2| = |-8| + |-2| = 8 + 2 = 10 \] \[ 3|0 + 2| = 3|2| = 6 \] Not equal, so no solutions in this interval. #### Interval 3: \( (1, 4) \) Choose \( x = 2 \): \[ |2^2 - 2(2) - 8| + |2^2 + 2 - 2| = |4 - 4 - 8| + |4 + 2 - 2| = |-8| + |4| = 8 + 4 = 12 \] \[ 3|2 + 2| = 3|4| = 12 \] Equal, so \( x = 2 \) is a solution. #### Interval 4: \( (4, \infty) \) Choose \( x = 5 \): \[ |5^2 - 2(5) - 8| + |5^2 + 5 - 2| = |25 - 10 - 8| + |25 + 5 - 2| = |7| + |28| = 7 + 28 = 35 \] \[ 3|5 + 2| = 3|7| = 21 \] Not equal, so no solutions in this interval. ### Step 3: Check critical points 1. **At \( x = -2 \)**: \[ |(-2)^2 - 2(-2) - 8| + |(-2)^2 + (-2) - 2| = |4 + 4 - 8| + |4 - 2 - 2| = |0| + |0| = 0 \] \[ 3|-2 + 2| = 3|0| = 0 \] Equal, so \( x = -2 \) is a solution. 2. **At \( x = 1 \)**: \[ |1^2 - 2(1) - 8| + |1^2 + 1 - 2| = |1 - 2 - 8| + |1 + 1 - 2| = |-9| + |0| = 9 + 0 = 9 \] \[ 3|1 + 2| = 3|3| = 9 \] Equal, so \( x = 1 \) is a solution. 3. **At \( x = 4 \)**: \[ |4^2 - 2(4) - 8| + |4^2 + 4 - 2| = |16 - 8 - 8| + |16 + 4 - 2| = |0| + |18| = 0 + 18 = 18 \] \[ 3|4 + 2| = 3|6| = 18 \] Equal, so \( x = 4 \) is a solution. ### Final Solution The set of all real values of \( x \) that satisfy the equation is: \[ \{ -2, 1, 2, 4 \} \]

To solve the equation \( |x^2 - 2x - 8| + |x^2 + x - 2| = 3|x + 2| \), we will break it down step by step. ### Step 1: Identify the critical points First, we need to find the points where each expression inside the absolute values equals zero. 1. **For \( |x^2 - 2x - 8| \)**: \[ x^2 - 2x - 8 = 0 \implies (x - 4)(x + 2) = 0 \implies x = 4 \text{ or } x = -2 ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|2 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Jee Advanced (Single|1 Videos

Similar Questions

Explore conceptually related problems

If |x^2-2x+2|-|2x^2-5x+2|=|x^2-3x| then the set of values of x is

If the expression ([s in(x/2)+cos(x/2)-i t a n(x)])/([1+2is in(x/2)]) is real, then the set of all possible values of x is.........

For what values of a is the inequality (x^(2) +ax-2)/( x^(2) -x+1) lt 2 satisfied for all real values of x?

If (x - p)/(x^(2) - 3x + 2) takes all real values for x in R then the range of P is

If f(x)={(x^3+x^2-16x+20)/(x-2)^2,x ne 0 k, x=0 is continuous for all real values of x, find the value of K.

If f(x)= -x^(3)-3x^(2)-2x+a,a in R then the real values of x satisfying f(x^(2)+1)gtf(2x^(2)+2x+3) will be

The number of integral values of K' the inequality |(x^2+kx+1)/(x^2+x+1)|<3 is satisfied for all real values of x is....

If x in N and |[x+3,-2],[-3x,2x]|=8, then find the value of x

If x in R then (x^(2)+2x+a)/(x^(2)+4x+3a) can take all real values if

Find the greatest value of 3+5x- 2x^(2) for all real values of x.

CENGAGE ENGLISH-INEQUALITIES AND MODULUS-Single correct Answer
  1. The complete set of values of x for which (x^(3)(x-1)^(2)(x+4))/((x+...

    Text Solution

    |

  2. The set of all values of x for which ((x+1)(x-3)^(2)(x-5)(x-4)^(3)(x...

    Text Solution

    |

  3. The solution set of inequality ((e^(x)-1)(2x-3)(x^(2)+x+2))/((sinx-...

    Text Solution

    |

  4. The solution set of inequality (1)/(2^(x)-1) gt (1)/(1-2^(x-1)) is

    Text Solution

    |

  5. Let A={x:x^(2)-4x+3 lt 0,x in R } B={x: 2^(1-x)+p le 0 , x^(2)-2(p+7)...

    Text Solution

    |

  6. Let a, b gt 0 satisfies a^(3)+b^(3)=a-b. Then

    Text Solution

    |

  7. The number of integers satisfying |2x-3|+|x+5| le |x-8| is

    Text Solution

    |

  8. Which of the following is not the solution of |2x+5|-|x-3| ge |x+8| ...

    Text Solution

    |

  9. The number of integral values of x satisfying the equation |x-|x-4||=4...

    Text Solution

    |

  10. The solution of |2x-3| lt |x+2| is

    Text Solution

    |

  11. The solution set of the inequation |(1)/(x)-2| lt 4, is

    Text Solution

    |

  12. The solution of |x+(1)/(x)| gt 2 is

    Text Solution

    |

  13. The solution of the inequality (|x+2|-|x|)/(sqrt(8-x^(3))) ge 0 is

    Text Solution

    |

  14. If |(12x)/(4x^(2)+9)| le 1, then

    Text Solution

    |

  15. Let a,b,c,d be real numbers such that |a-b|=2, |b-c|=3, |c-d|=4 Then t...

    Text Solution

    |

  16. The number of solutions of the equation sqrt(x^(2))-sqrt((x-1)^(2))+...

    Text Solution

    |

  17. If |x^2- 2x- 8| + |x^2+ x -2|= 3|x +2|, then the set of all real valu...

    Text Solution

    |

  18. The number of integers satisfying the equation |x|+|(4-x^(2))/(x)|=|(4...

    Text Solution

    |

  19. The equation |2ax-3|+|ax+1|+|5-ax|=(1)/(2) possesses

    Text Solution

    |

  20. The set of values of x satisfying |(x^(2)-5x+4)/(x^(2)-4)| le 1 is

    Text Solution

    |