If `x gt 0`, `y gt 0`, `z gt 0`, the least value of `x^(log_(e)y-log_(e)z)+y^(log_(e)z-log_(e)x)+Z^(log_(e)x-log_(e)y)` is
A
`3`
B
`1`
C
`5`
D
`6`
Text Solution
AI Generated Solution
The correct Answer is:
To find the least value of the expression
\[
x^{\log_e y - \log_e z} + y^{\log_e z - \log_e x} + z^{\log_e x - \log_e y}
\]
given that \(x > 0\), \(y > 0\), and \(z > 0\), we can follow these steps:
### Step 1: Change of Variables
Let us define:
- \(a = \log_e x\)
- \(b = \log_e y\)
- \(c = \log_e z\)
This transforms our expression into:
\[
e^{a(b - c)} + e^{b(c - a)} + e^{c(a - b)}
\]
### Step 2: Applying the AM-GM Inequality
We can apply the Arithmetic Mean-Geometric Mean (AM-GM) inequality to the three terms:
\[
\frac{e^{a(b - c)} + e^{b(c - a)} + e^{c(a - b)}}{3} \geq \sqrt[3]{e^{a(b - c)} \cdot e^{b(c - a)} \cdot e^{c(a - b)}}
\]
### Step 3: Simplifying the Right Side
The product on the right side can be simplified:
\[
e^{a(b - c) + b(c - a) + c(a - b)}
\]
### Step 4: Expanding the Exponent
Now, let’s expand the exponent:
\[
a(b - c) + b(c - a) + c(a - b) = ab - ac + bc - ba + ca - cb = 0
\]
### Step 5: Conclusion from AM-GM
Thus, we have:
\[
\sqrt[3]{e^0} = \sqrt[3]{1} = 1
\]
So, we can conclude:
\[
e^{a(b - c)} + e^{b(c - a)} + e^{c(a - b)} \geq 3
\]
### Final Result
The least value of the expression is therefore:
\[
\boxed{3}
\]
To find the least value of the expression
\[
x^{\log_e y - \log_e z} + y^{\log_e z - \log_e x} + z^{\log_e x - \log_e y}
\]
given that \(x > 0\), \(y > 0\), and \(z > 0\), we can follow these steps:
...
Topper's Solved these Questions
INEQUALITIES INVOLVING MEANS
CENGAGE ENGLISH|Exercise Comprehension|2 Videos
INEQUALITIES INVOLVING MEANS
CENGAGE ENGLISH|Exercise Illustration|29 Videos
INEQUALITIES AND MODULUS
CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
INTEGRALS
CENGAGE ENGLISH|Exercise All Questions|764 Videos
Similar Questions
Explore conceptually related problems
The value of 1+(log_(e)x)+(log_(e)x)^(2)/(2!)+(log_(e)x)^(3)/(3!)+…infty
If x gt 1 , y gt 1 , z gt 1 are in G.P. , then log_(ex)e , log_(ey)e , log_(ez)e are in
Find the value of lim_(xto0^(+)) (3(log_(e)x)^(2)+5log_(e)x+6)/(1+(log_(e)x)^(2)).
The value of log_(3) e- log_(9) e + log_(27) e- log_(81) e+…infty is
for x,x,z gt 0 Prove that |{:(1,,log_(x)y,,log_(x)z),(log_(y)x,,1,,log_(y)z),(log_(z) x,,log_(z)y,,1):}| =0
y=(log_(e)x)^(sinx)
Solve log_(e)(x-a)+log_(e)x=1.(a>0)
The value of e^("log"_(e) x+ "log"_(sqrt(e)) x+ "log"_(root(3)(e)) x + …. + "log"_(root(10)(e))x), is
Draw the graph of y= x ^((1)/(log_(e)x)) .
If f(x)=log_(e)(log_(e)x)/log_(e)x then f'(x) at x = e is
CENGAGE ENGLISH-INEQUALITIES INVOLVING MEANS -Jee Advanced (Single