Home
Class 12
MATHS
If x gt 0, y gt 0, z gt 0, the least val...

If `x gt 0`, `y gt 0`, `z gt 0`, the least value of
`x^(log_(e)y-log_(e)z)+y^(log_(e)z-log_(e)x)+Z^(log_(e)x-log_(e)y)` is

A

`3`

B

`1`

C

`5`

D

`6`

Text Solution

AI Generated Solution

The correct Answer is:
To find the least value of the expression \[ x^{\log_e y - \log_e z} + y^{\log_e z - \log_e x} + z^{\log_e x - \log_e y} \] given that \(x > 0\), \(y > 0\), and \(z > 0\), we can follow these steps: ### Step 1: Change of Variables Let us define: - \(a = \log_e x\) - \(b = \log_e y\) - \(c = \log_e z\) This transforms our expression into: \[ e^{a(b - c)} + e^{b(c - a)} + e^{c(a - b)} \] ### Step 2: Applying the AM-GM Inequality We can apply the Arithmetic Mean-Geometric Mean (AM-GM) inequality to the three terms: \[ \frac{e^{a(b - c)} + e^{b(c - a)} + e^{c(a - b)}}{3} \geq \sqrt[3]{e^{a(b - c)} \cdot e^{b(c - a)} \cdot e^{c(a - b)}} \] ### Step 3: Simplifying the Right Side The product on the right side can be simplified: \[ e^{a(b - c) + b(c - a) + c(a - b)} \] ### Step 4: Expanding the Exponent Now, let’s expand the exponent: \[ a(b - c) + b(c - a) + c(a - b) = ab - ac + bc - ba + ca - cb = 0 \] ### Step 5: Conclusion from AM-GM Thus, we have: \[ \sqrt[3]{e^0} = \sqrt[3]{1} = 1 \] So, we can conclude: \[ e^{a(b - c)} + e^{b(c - a)} + e^{c(a - b)} \geq 3 \] ### Final Result The least value of the expression is therefore: \[ \boxed{3} \]

To find the least value of the expression \[ x^{\log_e y - \log_e z} + y^{\log_e z - \log_e x} + z^{\log_e x - \log_e y} \] given that \(x > 0\), \(y > 0\), and \(z > 0\), we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Comprehension|2 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Illustration|29 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos

Similar Questions

Explore conceptually related problems

The value of 1+(log_(e)x)+(log_(e)x)^(2)/(2!)+(log_(e)x)^(3)/(3!)+…infty

If x gt 1 , y gt 1 , z gt 1 are in G.P. , then log_(ex)e , log_(ey)e , log_(ez)e are in

Find the value of lim_(xto0^(+)) (3(log_(e)x)^(2)+5log_(e)x+6)/(1+(log_(e)x)^(2)).

The value of log_(3) e- log_(9) e + log_(27) e- log_(81) e+…infty is

for x,x,z gt 0 Prove that |{:(1,,log_(x)y,,log_(x)z),(log_(y)x,,1,,log_(y)z),(log_(z) x,,log_(z)y,,1):}| =0

y=(log_(e)x)^(sinx)

Solve log_(e)(x-a)+log_(e)x=1.(a>0)

The value of e^("log"_(e) x+ "log"_(sqrt(e)) x+ "log"_(root(3)(e)) x + …. + "log"_(root(10)(e))x), is

Draw the graph of y= x ^((1)/(log_(e)x)) .

If f(x)=log_(e)(log_(e)x)/log_(e)x then f'(x) at x = e is