Home
Class 12
MATHS
Minimum value of f(x)=cos^(2)x+(secx)/(4...

Minimum value of `f(x)=cos^(2)x+(secx)/(4)`, `x in (-(pi)/(2),(pi)/(2))` is

A

`3//2`

B

`3//4`

C

`3//8`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the function \( f(x) = \cos^2 x + \frac{\sec x}{4} \) for \( x \) in the interval \( \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \), we can use the concept of the Arithmetic Mean-Geometric Mean (AM-GM) inequality. ### Step-by-Step Solution 1. **Identify the Function**: We start with the function given: \[ f(x) = \cos^2 x + \frac{\sec x}{4} \] 2. **Rewrite Secant**: Recall that \( \sec x = \frac{1}{\cos x} \). Thus, we can rewrite the function as: \[ f(x) = \cos^2 x + \frac{1}{4 \cos x} \] 3. **Apply AM-GM Inequality**: To apply the AM-GM inequality, we need to express the function in a suitable form. We can rewrite \( f(x) \) as: \[ f(x) = \cos^2 x + \frac{\sec x}{4} + \frac{\sec x}{4} \] This allows us to apply AM-GM to the three terms \( \cos^2 x, \frac{\sec x}{4}, \frac{\sec x}{4} \). 4. **Using AM-GM**: According to the AM-GM inequality: \[ \frac{\cos^2 x + \frac{\sec x}{4} + \frac{\sec x}{4}}{3} \geq \sqrt[3]{\cos^2 x \cdot \frac{\sec x}{4} \cdot \frac{\sec x}{4}} \] Simplifying the right-hand side: \[ \sqrt[3]{\cos^2 x \cdot \frac{1}{4 \cos x} \cdot \frac{1}{4 \cos x}} = \sqrt[3]{\frac{\cos^2 x}{16 \cos^2 x}} = \sqrt[3]{\frac{1}{16}} = \frac{1}{2} \] 5. **Combine Results**: Thus, we have: \[ \frac{\cos^2 x + \frac{\sec x}{4} + \frac{\sec x}{4}}{3} \geq \frac{1}{2} \] Multiplying both sides by 3 gives: \[ \cos^2 x + \frac{\sec x}{4} + \frac{\sec x}{4} \geq \frac{3}{2} \] 6. **Find Minimum Value**: Therefore, we can conclude that: \[ f(x) \geq \frac{3}{4} \] The minimum value of \( f(x) \) occurs when \( \cos^2 x = \frac{1}{4} \) and \( \sec x = 1 \), which happens at \( x = \frac{\pi}{3} \). 7. **Final Result**: Thus, the minimum value of \( f(x) \) is: \[ \boxed{\frac{3}{4}} \]

To find the minimum value of the function \( f(x) = \cos^2 x + \frac{\sec x}{4} \) for \( x \) in the interval \( \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \), we can use the concept of the Arithmetic Mean-Geometric Mean (AM-GM) inequality. ### Step-by-Step Solution 1. **Identify the Function**: We start with the function given: \[ f(x) = \cos^2 x + \frac{\sec x}{4} ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Comprehension|2 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Illustration|29 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = x cos^(-1)(-sin|x|) , x in (-pi/2,pi/2)

The minimum value of f(x)-sin^(4)x+cos^(4)x,0lexle(pi)/(2) is

The minimum value of the function f(x)=(tanx)/(3+2tanx), AA x in [0, (pi)/(2)) is

The minimum value of f(x)= "sin"x, [(-pi)/(2),(pi)/(2)] is

Find the maximum and the minimum values of f(x)=sin3x+4,\ \ x in (-pi//2,\ pi//2) , if any.

The value of cos(pi+x)cos(pi+x)sec^(2)x is

If f(x)=-int_(0)^(x) log (cos t) dt, then the value of f(x)-2f((pi)/(4)+(x)/(2))+2f((pi)/(4)-(x)/(2)) is equal to

The value of cos(pi+x)sin(pi-x) secx.coses x is

Let f(x)=sin^(-1)2x + cos^(-1)2x + sec^(-1)2x . Then the sum of the maximum and minimum values of f(x) is (a) pi (b) pi/2 (c) 2pi (d) (3pi)/2

Find the absolute maximum and minimum values of the function f given by f(x)=cos^2x+sinx , x in [0,\ pi] .