Minimum value of `f(x)=cos^(2)x+(secx)/(4)`, `x in (-(pi)/(2),(pi)/(2))` is
A
`3//2`
B
`3//4`
C
`3//8`
D
none of these
Text Solution
AI Generated Solution
The correct Answer is:
To find the minimum value of the function \( f(x) = \cos^2 x + \frac{\sec x}{4} \) for \( x \) in the interval \( \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \), we can use the concept of the Arithmetic Mean-Geometric Mean (AM-GM) inequality.
### Step-by-Step Solution
1. **Identify the Function**:
We start with the function given:
\[
f(x) = \cos^2 x + \frac{\sec x}{4}
\]
2. **Rewrite Secant**:
Recall that \( \sec x = \frac{1}{\cos x} \). Thus, we can rewrite the function as:
\[
f(x) = \cos^2 x + \frac{1}{4 \cos x}
\]
3. **Apply AM-GM Inequality**:
To apply the AM-GM inequality, we need to express the function in a suitable form. We can rewrite \( f(x) \) as:
\[
f(x) = \cos^2 x + \frac{\sec x}{4} + \frac{\sec x}{4}
\]
This allows us to apply AM-GM to the three terms \( \cos^2 x, \frac{\sec x}{4}, \frac{\sec x}{4} \).
4. **Using AM-GM**:
According to the AM-GM inequality:
\[
\frac{\cos^2 x + \frac{\sec x}{4} + \frac{\sec x}{4}}{3} \geq \sqrt[3]{\cos^2 x \cdot \frac{\sec x}{4} \cdot \frac{\sec x}{4}}
\]
Simplifying the right-hand side:
\[
\sqrt[3]{\cos^2 x \cdot \frac{1}{4 \cos x} \cdot \frac{1}{4 \cos x}} = \sqrt[3]{\frac{\cos^2 x}{16 \cos^2 x}} = \sqrt[3]{\frac{1}{16}} = \frac{1}{2}
\]
5. **Combine Results**:
Thus, we have:
\[
\frac{\cos^2 x + \frac{\sec x}{4} + \frac{\sec x}{4}}{3} \geq \frac{1}{2}
\]
Multiplying both sides by 3 gives:
\[
\cos^2 x + \frac{\sec x}{4} + \frac{\sec x}{4} \geq \frac{3}{2}
\]
6. **Find Minimum Value**:
Therefore, we can conclude that:
\[
f(x) \geq \frac{3}{4}
\]
The minimum value of \( f(x) \) occurs when \( \cos^2 x = \frac{1}{4} \) and \( \sec x = 1 \), which happens at \( x = \frac{\pi}{3} \).
7. **Final Result**:
Thus, the minimum value of \( f(x) \) is:
\[
\boxed{\frac{3}{4}}
\]
To find the minimum value of the function \( f(x) = \cos^2 x + \frac{\sec x}{4} \) for \( x \) in the interval \( \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \), we can use the concept of the Arithmetic Mean-Geometric Mean (AM-GM) inequality.
### Step-by-Step Solution
1. **Identify the Function**:
We start with the function given:
\[
f(x) = \cos^2 x + \frac{\sec x}{4}
...
Topper's Solved these Questions
INEQUALITIES INVOLVING MEANS
CENGAGE ENGLISH|Exercise Comprehension|2 Videos
INEQUALITIES INVOLVING MEANS
CENGAGE ENGLISH|Exercise Illustration|29 Videos
INEQUALITIES AND MODULUS
CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
INTEGRALS
CENGAGE ENGLISH|Exercise All Questions|764 Videos
Similar Questions
Explore conceptually related problems
Let f(x) = x cos^(-1)(-sin|x|) , x in (-pi/2,pi/2)
The minimum value of f(x)-sin^(4)x+cos^(4)x,0lexle(pi)/(2) is
The minimum value of the function f(x)=(tanx)/(3+2tanx), AA x in [0, (pi)/(2)) is
The minimum value of f(x)= "sin"x, [(-pi)/(2),(pi)/(2)] is
Find the maximum and the minimum values of f(x)=sin3x+4,\ \ x in (-pi//2,\ pi//2) , if any.
The value of cos(pi+x)cos(pi+x)sec^(2)x is
If f(x)=-int_(0)^(x) log (cos t) dt, then the value of f(x)-2f((pi)/(4)+(x)/(2))+2f((pi)/(4)-(x)/(2)) is equal to
The value of cos(pi+x)sin(pi-x) secx.coses x is
Let f(x)=sin^(-1)2x + cos^(-1)2x + sec^(-1)2x . Then the sum of the maximum and minimum values of f(x) is (a) pi (b) pi/2 (c) 2pi (d) (3pi)/2
Find the absolute maximum and minimum values of the function f given by f(x)=cos^2x+sinx , x in [0,\ pi] .
CENGAGE ENGLISH-INEQUALITIES INVOLVING MEANS -Jee Advanced (Single