Home
Class 12
MATHS
If n(1), n(2), n(3),…..,n(100) are posit...

If `n_(1)`, `n_(2)`, `n_(3)`,…..,`n_(100)` are positive real numbers such that `n_(1)+n_(2)+n_(3)+…+n_(100)=20` and `k=n_(1)(n_(2)+n_(3)+n_(4))(n_(5)+n_(6)+…+n_(9))(n_(10)+….+n_(16))…(…+n_(100))`, then `k` belongs to

A

`(o,100]`

B

`(o,128]`

C

`(o,144]`

D

`(o,1024]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the range of \( k \) defined as: \[ k = n_1(n_2 + n_3 + n_4)(n_5 + n_6 + n_7 + n_8 + n_9)(n_{10} + n_{11} + \ldots + n_{16}) \ldots (n_{17} + n_{18} + \ldots + n_{100}) \] given that \[ n_1 + n_2 + n_3 + \ldots + n_{100} = 20 \] ### Step 1: Apply the AM-GM Inequality We will use the Arithmetic Mean-Geometric Mean (AM-GM) inequality to find a lower bound for \( k \). The AM-GM inequality states that for any non-negative real numbers \( a_1, a_2, \ldots, a_n \): \[ \frac{a_1 + a_2 + \ldots + a_n}{n} \geq \sqrt[n]{a_1 a_2 \ldots a_n} \] ### Step 2: Group the Terms We can group the terms in \( k \) as follows: 1. \( n_1 \) 2. \( n_2 + n_3 + n_4 \) (3 terms) 3. \( n_5 + n_6 + n_7 + n_8 + n_9 \) (5 terms) 4. \( n_{10} + n_{11} + \ldots + n_{16} \) (7 terms) 5. \( n_{17} + n_{18} + \ldots + n_{100} \) (84 terms) ### Step 3: Apply AM-GM to Each Group Using AM-GM for each group: 1. For \( n_1 \): \[ n_1 \geq n_1 \] 2. For \( n_2 + n_3 + n_4 \) (3 terms): \[ \frac{n_2 + n_3 + n_4}{3} \geq \sqrt[3]{n_2 n_3 n_4} \] 3. For \( n_5 + n_6 + n_7 + n_8 + n_9 \) (5 terms): \[ \frac{n_5 + n_6 + n_7 + n_8 + n_9}{5} \geq \sqrt[5]{n_5 n_6 n_7 n_8 n_9} \] 4. For \( n_{10} + n_{11} + \ldots + n_{16} \) (7 terms): \[ \frac{n_{10} + n_{11} + \ldots + n_{16}}{7} \geq \sqrt[7]{n_{10} n_{11} \ldots n_{16}} \] 5. For \( n_{17} + n_{18} + \ldots + n_{100} \) (84 terms): \[ \frac{n_{17} + n_{18} + \ldots + n_{100}}{84} \geq \sqrt[84]{n_{17} n_{18} \ldots n_{100}} \] ### Step 4: Combine the Inequalities Using the total sum \( n_1 + n_2 + n_3 + \ldots + n_{100} = 20 \), we can write: \[ \frac{20}{10} \geq \sqrt[10]{k} \] This simplifies to: \[ 2 \geq \sqrt[10]{k} \] ### Step 5: Raise Both Sides to the Power of 10 Raising both sides to the power of 10 gives: \[ 2^{10} \geq k \] Calculating \( 2^{10} \): \[ 1024 \geq k \] ### Step 6: Establish the Range of \( k \) Since \( k \) is a product of positive real numbers, we also have \( k > 0 \). Thus, we can conclude: \[ 0 < k \leq 1024 \] ### Final Answer The range of \( k \) is: \[ k \in (0, 1024] \]

To solve the problem, we need to find the range of \( k \) defined as: \[ k = n_1(n_2 + n_3 + n_4)(n_5 + n_6 + n_7 + n_8 + n_9)(n_{10} + n_{11} + \ldots + n_{16}) \ldots (n_{17} + n_{18} + \ldots + n_{100}) \] given that ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Comprehension|2 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Illustration|29 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos

Similar Questions

Explore conceptually related problems

If S_(1),S_(2)andS_(3) denote the sum of first n_(1)n_(2)andn_(3) terms respectively of an A.P., then (S_(1))/(n_(1))(n_(2)-n_(3))+(S_(2))/(n_(2))+(n_(3)-n_(1))+(S_(3))/(n_(3))(n_(1)-n_(2)) =

Let N be the number of integer solutions of the equation n_(1) + n_(2) + n_(3) + n_(4)= 17 when n ge 1, n_(2) ge -1, n_(3) ge 3, n_(4) ge 0 . If N= ""^(17)C_(K) , then find K.

Let n_1ltn_2ltn_3ltn_4ltn_5 be positive integers such that n_1+n_2+n_3+n_4+n_5="20. then the number of distinct arrangements n_1, n_2, n_3, n_4, n_5 is

Find the integral solution for n_(1)n_(2)=2n_(1)-n_(2), " where " n_(1),n_(2) in "integer" .

If S_(n) = sum_(n=1)^(n) (2n + 1)/(n^(4) + 2n^(3) + n^(2)) then S_(10) is less then

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

If n_(1)+n_(2)+n_(3)+n_(4)=20 such that n_(i)gei+1AAiin{1,2,3,4} and n_(i)"n" inI then number of solutions are

If n^(2)-11n+24=0 is satisfied by n_(1)&n_(2) where n_(2)gtn_(1) then (A) n_(1)^(2)+n_(2) is prime number (B) n_(1)&n_(2)-n_(1) are co-prime (C) n_(1)&n_(2)-n_(1) are twin primes (D) n_(1)+n_(2)+n_(1)n_(2) has 2 prime divisors

If (sin^(-1)x+sin^(-1)y)(sin^(-1)Z+sin^(-1)w)=pi^(2) and n_(1),n_(2),n_(3),n_(4) in N value of |(x^(n1),y^(n2)),(z^(n)3,w^(n4))| cannot be equal to