If `n_(1)`, `n_(2)`, `n_(3)`,…..,`n_(100)` are positive real numbers such that `n_(1)+n_(2)+n_(3)+…+n_(100)=20` and `k=n_(1)(n_(2)+n_(3)+n_(4))(n_(5)+n_(6)+…+n_(9))(n_(10)+….+n_(16))…(…+n_(100))`, then `k` belongs to
A
`(o,100]`
B
`(o,128]`
C
`(o,144]`
D
`(o,1024]`
Text Solution
AI Generated Solution
The correct Answer is:
To solve the problem, we need to find the range of \( k \) defined as:
\[
k = n_1(n_2 + n_3 + n_4)(n_5 + n_6 + n_7 + n_8 + n_9)(n_{10} + n_{11} + \ldots + n_{16}) \ldots (n_{17} + n_{18} + \ldots + n_{100})
\]
given that
\[
n_1 + n_2 + n_3 + \ldots + n_{100} = 20
\]
### Step 1: Apply the AM-GM Inequality
We will use the Arithmetic Mean-Geometric Mean (AM-GM) inequality to find a lower bound for \( k \).
The AM-GM inequality states that for any non-negative real numbers \( a_1, a_2, \ldots, a_n \):
\[
\frac{a_1 + a_2 + \ldots + a_n}{n} \geq \sqrt[n]{a_1 a_2 \ldots a_n}
\]
### Step 2: Group the Terms
We can group the terms in \( k \) as follows:
1. \( n_1 \)
2. \( n_2 + n_3 + n_4 \) (3 terms)
3. \( n_5 + n_6 + n_7 + n_8 + n_9 \) (5 terms)
4. \( n_{10} + n_{11} + \ldots + n_{16} \) (7 terms)
5. \( n_{17} + n_{18} + \ldots + n_{100} \) (84 terms)
### Step 3: Apply AM-GM to Each Group
Using AM-GM for each group:
1. For \( n_1 \):
\[
n_1 \geq n_1
\]
2. For \( n_2 + n_3 + n_4 \) (3 terms):
\[
\frac{n_2 + n_3 + n_4}{3} \geq \sqrt[3]{n_2 n_3 n_4}
\]
3. For \( n_5 + n_6 + n_7 + n_8 + n_9 \) (5 terms):
\[
\frac{n_5 + n_6 + n_7 + n_8 + n_9}{5} \geq \sqrt[5]{n_5 n_6 n_7 n_8 n_9}
\]
4. For \( n_{10} + n_{11} + \ldots + n_{16} \) (7 terms):
\[
\frac{n_{10} + n_{11} + \ldots + n_{16}}{7} \geq \sqrt[7]{n_{10} n_{11} \ldots n_{16}}
\]
5. For \( n_{17} + n_{18} + \ldots + n_{100} \) (84 terms):
\[
\frac{n_{17} + n_{18} + \ldots + n_{100}}{84} \geq \sqrt[84]{n_{17} n_{18} \ldots n_{100}}
\]
### Step 4: Combine the Inequalities
Using the total sum \( n_1 + n_2 + n_3 + \ldots + n_{100} = 20 \), we can write:
\[
\frac{20}{10} \geq \sqrt[10]{k}
\]
This simplifies to:
\[
2 \geq \sqrt[10]{k}
\]
### Step 5: Raise Both Sides to the Power of 10
Raising both sides to the power of 10 gives:
\[
2^{10} \geq k
\]
Calculating \( 2^{10} \):
\[
1024 \geq k
\]
### Step 6: Establish the Range of \( k \)
Since \( k \) is a product of positive real numbers, we also have \( k > 0 \). Thus, we can conclude:
\[
0 < k \leq 1024
\]
### Final Answer
The range of \( k \) is:
\[
k \in (0, 1024]
\]
To solve the problem, we need to find the range of \( k \) defined as:
\[
k = n_1(n_2 + n_3 + n_4)(n_5 + n_6 + n_7 + n_8 + n_9)(n_{10} + n_{11} + \ldots + n_{16}) \ldots (n_{17} + n_{18} + \ldots + n_{100})
\]
given that
...
Topper's Solved these Questions
INEQUALITIES INVOLVING MEANS
CENGAGE ENGLISH|Exercise Comprehension|2 Videos
INEQUALITIES INVOLVING MEANS
CENGAGE ENGLISH|Exercise Illustration|29 Videos
INEQUALITIES AND MODULUS
CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
INTEGRALS
CENGAGE ENGLISH|Exercise All Questions|764 Videos
Similar Questions
Explore conceptually related problems
If S_(1),S_(2)andS_(3) denote the sum of first n_(1)n_(2)andn_(3) terms respectively of an A.P., then (S_(1))/(n_(1))(n_(2)-n_(3))+(S_(2))/(n_(2))+(n_(3)-n_(1))+(S_(3))/(n_(3))(n_(1)-n_(2)) =
Let N be the number of integer solutions of the equation n_(1) + n_(2) + n_(3) + n_(4)= 17 when n ge 1, n_(2) ge -1, n_(3) ge 3, n_(4) ge 0 . If N= ""^(17)C_(K) , then find K.
Let n_1ltn_2ltn_3ltn_4ltn_5 be positive integers such that n_1+n_2+n_3+n_4+n_5="20. then the number of distinct arrangements n_1, n_2, n_3, n_4, n_5 is
Find the integral solution for n_(1)n_(2)=2n_(1)-n_(2), " where " n_(1),n_(2) in "integer" .
If S_(n) = sum_(n=1)^(n) (2n + 1)/(n^(4) + 2n^(3) + n^(2)) then S_(10) is less then
If n_(1)+n_(2)+n_(3)+n_(4)=20 such that n_(i)gei+1AAiin{1,2,3,4} and n_(i)"n" inI then number of solutions are
If n^(2)-11n+24=0 is satisfied by n_(1)&n_(2) where n_(2)gtn_(1) then (A) n_(1)^(2)+n_(2) is prime number (B) n_(1)&n_(2)-n_(1) are co-prime (C) n_(1)&n_(2)-n_(1) are twin primes (D) n_(1)+n_(2)+n_(1)n_(2) has 2 prime divisors
If (sin^(-1)x+sin^(-1)y)(sin^(-1)Z+sin^(-1)w)=pi^(2) and n_(1),n_(2),n_(3),n_(4) in N value of |(x^(n1),y^(n2)),(z^(n)3,w^(n4))| cannot be equal to
CENGAGE ENGLISH-INEQUALITIES INVOLVING MEANS -Jee Advanced (Single