If `a`, `b`, `c` are the sides of triangle , then the least value of `(a)/(c+a-b)+(b)/(a+b-c)+(c )/(b+c-a)` is
A
`1//3`
B
`1`
C
`3`
D
`6`
Text Solution
Verified by Experts
The correct Answer is:
C
`(b)` `c+a-b`, `b+c-a`,`a+b-c` are all positive Using `A.M. ge G.M.` `:.(a)/(c+a-b)+(b)/(a+b-c)+(c )/(b+c-a) ge [(abc)/((c+a-b)(a+b-c)(b+c-a))]^(1//3)`........`(i)` Also , `a^(2) ge a^(2)-(b-c)^(2)` `implies a^(2) ge (a+b-c)(a-b+c)` Similarly `b^(2) ge (b+c-a)(b-c+a)` `c^(2) ge (c+a-b)(c-a+b)` `:.a^(2)b^(2)c^(2) ge (a+b-c)^(2)(b+c-a)^(2)(c+a-b)^(2)` Thus `abc ge (a+b-c)(b+c-a)(c+a-b)` `implies (abc)/((c+a-b)(a+b-c)(b+c-a)) ge 1` Hence, from `(i) (abc)/((c+a-b)(a+b-c)(b+c-a)) ge 1`
Topper's Solved these Questions
INEQUALITIES INVOLVING MEANS
CENGAGE ENGLISH|Exercise Comprehension|2 Videos
INEQUALITIES INVOLVING MEANS
CENGAGE ENGLISH|Exercise Illustration|29 Videos
INEQUALITIES AND MODULUS
CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
INTEGRALS
CENGAGE ENGLISH|Exercise All Questions|764 Videos
Similar Questions
Explore conceptually related problems
If a , ba n dc are the side of a triangle, then the minimum value of (2a)/(b+c-a)+(2b)/(c+a-b)+(2c)/(a+b-c)i s (a) 3 (b) 9 (c) 6 (d) 1
If a ,b ,c are the sides of a triangle, then the minimum value of a/(b+c-a)+b/(c+a-b)+c/(a+b-c) is equal to (a) 3 (b) 6 (c) 9 (d) 12
The value of (a-b)(a+b)+(b-c)(b+c)+(c+a)(c-a) is :
If a, b and c represent the lengths of sides of a triangle then the possible integeral value of (a)/(b+c) + (b)/(c+a) + (c)/(a +b) is _____
If a, b, c are positive real numbers, then the least value of (a+b+c)((1)/(a)+(1)/(b)+(1)/( c )) , is
If a,b,c are the sides of a triangle then a/(b+c-1)+b/(c+a-b)+c/(a+b-c)=
Let a,b,c be the sides of a triangle ABC, a=2c,cos(A-C)+cos B=1. then the value of C is
Given that a , b , c , are the side of a A B C which is right angled at C , then the minimum value of (c/a+c/b)^2 is
If a ,b ,c are sides of a scalene triangle, then value of |[a, b, c] ,[b, c, a] ,[c, a, b]| is positive (b) negative non-positive (d) non-negative
The value of |(a-b,b+c,a),(b-a,c+a,b),(c-a,a+b,c)| is
CENGAGE ENGLISH-INEQUALITIES INVOLVING MEANS -Jee Advanced (Single