Home
Class 12
MATHS
If x gt 0, (x^(n))/(1+x+x^(2)+...+x^(2n)...

If `x gt 0`, `(x^(n))/(1+x+x^(2)+...+x^(2n))` is

A

` le (1)/(2n+1)`

B

` lt (2)/(2n+1)`

C

` ge (1)/(2n+1)`

D

` gt (2)/(2n+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expression given: \[ \frac{x^n}{1 + x + x^2 + \ldots + x^{2n}} \] ### Step 1: Simplifying the Denominator The denominator is a geometric series. We can use the formula for the sum of a geometric series: \[ S = a \frac{1 - r^{n}}{1 - r} \] where \( a \) is the first term, \( r \) is the common ratio, and \( n \) is the number of terms. In our case: - The first term \( a = 1 \) - The common ratio \( r = x \) - The number of terms is \( 2n + 1 \) (from \( x^0 \) to \( x^{2n} \)) Thus, the sum of the series is: \[ 1 + x + x^2 + \ldots + x^{2n} = \frac{1 - x^{2n+1}}{1 - x} \] ### Step 2: Rewrite the Expression Now we can rewrite our expression: \[ \frac{x^n}{\frac{1 - x^{2n+1}}{1 - x}} = \frac{x^n (1 - x)}{1 - x^{2n+1}} \] ### Step 3: Analyzing the Expression We need to analyze the behavior of this expression as \( x > 0 \). 1. **As \( x \to 0 \)**: \[ \frac{x^n (1 - x)}{1 - x^{2n+1}} \to 0 \] 2. **As \( x \to 1 \)**: \[ \frac{x^n (1 - x)}{1 - x^{2n+1}} \to \frac{1 \cdot 0}{0} \text{ (indeterminate form)} \] 3. **As \( x \to \infty \)**: \[ \frac{x^n (1 - x)}{1 - x^{2n+1}} \to \text{ (dominant terms lead to } \frac{x^n (-x)}{-x^{2n+1}} = \frac{x^{n+1}}{x^{2n+1}} = \frac{1}{x^{n}} \to 0) \] ### Step 4: Finding the Maximum Value To find the maximum value of the expression, we can apply the AM-GM inequality. We know that: \[ \frac{x^k + \frac{1}{x^k}}{2} \geq 1 \quad \text{for } k = 1, 2, \ldots, n \] This implies: \[ x + \frac{1}{x} \geq 2, \quad x^2 + \frac{1}{x^2} \geq 2, \ldots, \quad x^n + \frac{1}{x^n} \geq 2 \] Adding these inequalities gives: \[ (x + \frac{1}{x}) + (x^2 + \frac{1}{x^2}) + \ldots + (x^n + \frac{1}{x^n}) \geq 2n \] Thus: \[ 1 + x + x^2 + \ldots + x^{2n} \geq 2n + 1 \] Taking the reciprocal gives: \[ \frac{1}{1 + x + x^2 + \ldots + x^{2n}} \leq \frac{1}{2n + 1} \] ### Conclusion Thus, we conclude that: \[ \frac{x^n}{1 + x + x^2 + \ldots + x^{2n}} \leq \frac{1}{2n + 1} \] The maximum value of the expression is: \[ \frac{1}{2n + 1} \] ### Final Answer The answer is: \[ \frac{x^n}{1 + x + x^2 + \ldots + x^{2n}} \leq \frac{1}{2n + 1} \]

To solve the problem, we need to analyze the expression given: \[ \frac{x^n}{1 + x + x^2 + \ldots + x^{2n}} \] ### Step 1: Simplifying the Denominator ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Comprehension|2 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Illustration|29 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos

Similar Questions

Explore conceptually related problems

The function f (x)={((x ^(2n)))/((x ^(2n) sgn x)^(2n+1))((e ^(1/x)-e ^(-1/x))/(e ^(1/x)+e ^(-(1)/(x))))x ne0 n in N is:

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .

Let f(x) and g(x) be two continuous function and h(x)= lim_(n to oo) (x^(2n).f(x)+x^(2m).g(x))/((x^(2n)+1)). if the limit of h(x) exists at x=1, then one root of f(x)-g(x) =0 is _____.

Statement-1: The middle term of (x+(1)/(x))^(2n) can exceed ((2n)^(n))/(n!) for some value of x. Statement-2: The coefficient of x^(n) in the expansion of (1-2x+3x^(2)-4x^(3)+ . . .)^(-n) is (1*3*5 . . .(2n-1))/(n!)*2^(n) . Statement-3: The coefficient of x^(5) in (1+2x+3x^(2)+ . . .)^(-3//2) is 2.1.

If |(x^n ,x^(n+2), x^(2n)),(1, x^a, a), (x^(n+5), x^(a+6), x^(2n+5))|=0,AAx in R ,w h e r en in N , then value of a is n b. n-1 c. n+1 d. none of these

Let y_(n)(x) = x^(2) + (x^(2))/(1+x^(2))+(x^(2))/((1+x^(2))^(2))+......(x^(2))/((1+x^(2))^(n-1))and y(x) = lim_(n rarr oo) y_(n) (x) . Discuss the continuity of y_(n)(x)(n = 1, 2, 3....n) and y(x) "at x" = 0

If barx is the mean of x_(1), x_(2), …………., x_(n) , then for a ne 0 , the mean of ax_(1), ax_(2),…….., ax_(n), x_(1)/a, x_(2)/a, ……….., x_(n)/a is

Lt_(x rarr 0) ((1+x)^(n)-nx-1)/(x^(2)) n gt 1 is euqal to

For n gt 0 int_(0)^(2pi)(x sin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx= ….

The equivalent definition of the function f(x)=lim_(n to oo)(x^(n)-x^(-n))/(x^(n)+x^(-n)), x gt 0 , is