To solve the problem, we need to analyze the expression given:
\[
\frac{x^n}{1 + x + x^2 + \ldots + x^{2n}}
\]
### Step 1: Simplifying the Denominator
The denominator is a geometric series. We can use the formula for the sum of a geometric series:
\[
S = a \frac{1 - r^{n}}{1 - r}
\]
where \( a \) is the first term, \( r \) is the common ratio, and \( n \) is the number of terms. In our case:
- The first term \( a = 1 \)
- The common ratio \( r = x \)
- The number of terms is \( 2n + 1 \) (from \( x^0 \) to \( x^{2n} \))
Thus, the sum of the series is:
\[
1 + x + x^2 + \ldots + x^{2n} = \frac{1 - x^{2n+1}}{1 - x}
\]
### Step 2: Rewrite the Expression
Now we can rewrite our expression:
\[
\frac{x^n}{\frac{1 - x^{2n+1}}{1 - x}} = \frac{x^n (1 - x)}{1 - x^{2n+1}}
\]
### Step 3: Analyzing the Expression
We need to analyze the behavior of this expression as \( x > 0 \).
1. **As \( x \to 0 \)**:
\[
\frac{x^n (1 - x)}{1 - x^{2n+1}} \to 0
\]
2. **As \( x \to 1 \)**:
\[
\frac{x^n (1 - x)}{1 - x^{2n+1}} \to \frac{1 \cdot 0}{0} \text{ (indeterminate form)}
\]
3. **As \( x \to \infty \)**:
\[
\frac{x^n (1 - x)}{1 - x^{2n+1}} \to \text{ (dominant terms lead to } \frac{x^n (-x)}{-x^{2n+1}} = \frac{x^{n+1}}{x^{2n+1}} = \frac{1}{x^{n}} \to 0)
\]
### Step 4: Finding the Maximum Value
To find the maximum value of the expression, we can apply the AM-GM inequality.
We know that:
\[
\frac{x^k + \frac{1}{x^k}}{2} \geq 1 \quad \text{for } k = 1, 2, \ldots, n
\]
This implies:
\[
x + \frac{1}{x} \geq 2, \quad x^2 + \frac{1}{x^2} \geq 2, \ldots, \quad x^n + \frac{1}{x^n} \geq 2
\]
Adding these inequalities gives:
\[
(x + \frac{1}{x}) + (x^2 + \frac{1}{x^2}) + \ldots + (x^n + \frac{1}{x^n}) \geq 2n
\]
Thus:
\[
1 + x + x^2 + \ldots + x^{2n} \geq 2n + 1
\]
Taking the reciprocal gives:
\[
\frac{1}{1 + x + x^2 + \ldots + x^{2n}} \leq \frac{1}{2n + 1}
\]
### Conclusion
Thus, we conclude that:
\[
\frac{x^n}{1 + x + x^2 + \ldots + x^{2n}} \leq \frac{1}{2n + 1}
\]
The maximum value of the expression is:
\[
\frac{1}{2n + 1}
\]
### Final Answer
The answer is:
\[
\frac{x^n}{1 + x + x^2 + \ldots + x^{2n}} \leq \frac{1}{2n + 1}
\]
To solve the problem, we need to analyze the expression given:
\[
\frac{x^n}{1 + x + x^2 + \ldots + x^{2n}}
\]
### Step 1: Simplifying the Denominator
...
Topper's Solved these Questions
INEQUALITIES INVOLVING MEANS
CENGAGE ENGLISH|Exercise Comprehension|2 Videos
INEQUALITIES INVOLVING MEANS
CENGAGE ENGLISH|Exercise Illustration|29 Videos
INEQUALITIES AND MODULUS
CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
INTEGRALS
CENGAGE ENGLISH|Exercise All Questions|764 Videos
Similar Questions
Explore conceptually related problems
The function f (x)={((x ^(2n)))/((x ^(2n) sgn x)^(2n+1))((e ^(1/x)-e ^(-1/x))/(e ^(1/x)+e ^(-(1)/(x))))x ne0 n in N is:
Let f(x) and g(x) be two continuous function and h(x)= lim_(n to oo) (x^(2n).f(x)+x^(2m).g(x))/((x^(2n)+1)). if the limit of h(x) exists at x=1, then one root of f(x)-g(x) =0 is _____.
Statement-1: The middle term of (x+(1)/(x))^(2n) can exceed ((2n)^(n))/(n!) for some value of x. Statement-2: The coefficient of x^(n) in the expansion of (1-2x+3x^(2)-4x^(3)+ . . .)^(-n) is (1*3*5 . . .(2n-1))/(n!)*2^(n) . Statement-3: The coefficient of x^(5) in (1+2x+3x^(2)+ . . .)^(-3//2) is 2.1.
If |(x^n ,x^(n+2), x^(2n)),(1, x^a, a), (x^(n+5), x^(a+6), x^(2n+5))|=0,AAx in R ,w h e r en in N , then value of a is n b. n-1 c. n+1 d. none of these
Let y_(n)(x) = x^(2) + (x^(2))/(1+x^(2))+(x^(2))/((1+x^(2))^(2))+......(x^(2))/((1+x^(2))^(n-1))and y(x) = lim_(n rarr oo) y_(n) (x) . Discuss the continuity of y_(n)(x)(n = 1, 2, 3....n) and y(x) "at x" = 0
If barx is the mean of x_(1), x_(2), …………., x_(n) , then for a ne 0 , the mean of ax_(1), ax_(2),…….., ax_(n), x_(1)/a, x_(2)/a, ……….., x_(n)/a is
Lt_(x rarr 0) ((1+x)^(n)-nx-1)/(x^(2)) n gt 1 is euqal to
For n gt 0 int_(0)^(2pi)(x sin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx= ….
The equivalent definition of the function f(x)=lim_(n to oo)(x^(n)-x^(-n))/(x^(n)+x^(-n)), x gt 0 , is
CENGAGE ENGLISH-INEQUALITIES INVOLVING MEANS -Jee Advanced (Single