Home
Class 12
MATHS
The least integral value of f(x)=((x-1...

The least integral value of
`f(x)=((x-1)^(7)+3(x-1)^(6)+(x-1)^(5)+1)/(x-1)^(5)`, `AAx gt 1` is (a) 8 (b) 6 (c) 12 (d) 18

A

`8`

B

`6`

C

`12`

D

`18`

Text Solution

AI Generated Solution

The correct Answer is:
To find the least integral value of the function \[ f(x) = \frac{(x-1)^{7} + 3(x-1)^{6} + (x-1)^{5} + 1}{(x-1)^{5}} \] for \( x > 1 \), we can follow these steps: ### Step 1: Substitute \( a = x - 1 \) Since \( x > 1 \), we have \( a > 0 \). We can rewrite the function in terms of \( a \): \[ f(x) = \frac{a^{7} + 3a^{6} + a^{5} + 1}{a^{5}} \] ### Step 2: Simplify the function Now, simplifying the expression: \[ f(a) = \frac{a^{7}}{a^{5}} + \frac{3a^{6}}{a^{5}} + \frac{a^{5}}{a^{5}} + \frac{1}{a^{5}} = a^{2} + 3a + 1 + a^{-5} \] ### Step 3: Analyze the function We need to find the minimum value of \[ f(a) = a^{2} + 3a + 1 + a^{-5} \] for \( a > 0 \). ### Step 4: Use the AM-GM Inequality We can apply the Arithmetic Mean-Geometric Mean (AM-GM) inequality to the terms \( a^{2}, 3a, 1, a^{-5} \). The AM-GM inequality states that the arithmetic mean of non-negative numbers is greater than or equal to the geometric mean. Here, we have 4 terms: - \( a^{2} \) - \( a \) - \( a \) - \( a \) - \( 1 \) - \( a^{-5} \) Thus, we can write: \[ \frac{a^{2} + 3a + 1 + a^{-5}}{6} \geq (a^{2} \cdot a \cdot a \cdot a \cdot 1 \cdot a^{-5})^{1/6} \] ### Step 5: Calculate the geometric mean Calculating the geometric mean: \[ a^{2} \cdot a \cdot a \cdot a \cdot 1 \cdot a^{-5} = a^{2 + 3 - 5} = a^{0} = 1 \] Thus, we have: \[ \frac{a^{2} + 3a + 1 + a^{-5}}{6} \geq 1 \implies a^{2} + 3a + 1 + a^{-5} \geq 6 \] ### Step 6: Conclusion This shows that \( f(a) \geq 6 \) for all \( a > 0 \). Therefore, the least integral value of \( f(x) \) is: \[ \boxed{6} \]

To find the least integral value of the function \[ f(x) = \frac{(x-1)^{7} + 3(x-1)^{6} + (x-1)^{5} + 1}{(x-1)^{5}} \] for \( x > 1 \), we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Comprehension|2 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Illustration|29 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos

Similar Questions

Explore conceptually related problems

Find the smallest integral value of x satisfying (x-2)^(x^2-6x+8))>1

The least positive integral value of x for which ""^(10)C_(x-1)gt2(""^(10)C_(x)) is

Find the smallest integral value of x satisfying (x-2)^(x^(2)-6x+8) gt 1 .

The maximum value of f(x)=x/(1+4x+x^2) is -1/4 (b) -1/3 (c) 1/6 (d) 1/6

If (x^(2)-5x+7)/(x-1)^(3)=A/(x-1)+B/(x-1)^(2)+C/(x-1)^(3) " then " A+B-C=

If (x-2)/3=(2x-1)/3-1, then x= (a) 2 (b) 4 (c) 6 (d) 8

The maximum integral values of x in the domain of f (x) =log _(10)(log _(1//3)(log _(4) (x-5)) is : (a). 5 (b). 7 (c). 8 (d). 9

Solve the equation (12x-1)(6x-1)(4x-1)(3x-1)=5

The maximum value of f(x)=x/(4-x+x^2) on [-1,1] is (a) 1/4 (b) -1/3 (c) 1/6 (d) 1/5

The maximum value of f(x)=x/(4+x+x^2) on [-1,1] is (a) 1/4 (b) -1/3 (c) 1/6 (d) 1/5