The least integral value of `f(x)=((x-1)^(7)+3(x-1)^(6)+(x-1)^(5)+1)/(x-1)^(5)`, `AAx gt 1` is
(a) 8
(b) 6
(c) 12
(d) 18
A
`8`
B
`6`
C
`12`
D
`18`
Text Solution
AI Generated Solution
The correct Answer is:
To find the least integral value of the function
\[
f(x) = \frac{(x-1)^{7} + 3(x-1)^{6} + (x-1)^{5} + 1}{(x-1)^{5}}
\]
for \( x > 1 \), we can follow these steps:
### Step 1: Substitute \( a = x - 1 \)
Since \( x > 1 \), we have \( a > 0 \). We can rewrite the function in terms of \( a \):
\[
f(x) = \frac{a^{7} + 3a^{6} + a^{5} + 1}{a^{5}}
\]
### Step 2: Simplify the function
Now, simplifying the expression:
\[
f(a) = \frac{a^{7}}{a^{5}} + \frac{3a^{6}}{a^{5}} + \frac{a^{5}}{a^{5}} + \frac{1}{a^{5}} = a^{2} + 3a + 1 + a^{-5}
\]
### Step 3: Analyze the function
We need to find the minimum value of
\[
f(a) = a^{2} + 3a + 1 + a^{-5}
\]
for \( a > 0 \).
### Step 4: Use the AM-GM Inequality
We can apply the Arithmetic Mean-Geometric Mean (AM-GM) inequality to the terms \( a^{2}, 3a, 1, a^{-5} \).
The AM-GM inequality states that the arithmetic mean of non-negative numbers is greater than or equal to the geometric mean.
Here, we have 4 terms:
- \( a^{2} \)
- \( a \)
- \( a \)
- \( a \)
- \( 1 \)
- \( a^{-5} \)
Thus, we can write:
\[
\frac{a^{2} + 3a + 1 + a^{-5}}{6} \geq (a^{2} \cdot a \cdot a \cdot a \cdot 1 \cdot a^{-5})^{1/6}
\]
### Step 5: Calculate the geometric mean
Calculating the geometric mean:
\[
a^{2} \cdot a \cdot a \cdot a \cdot 1 \cdot a^{-5} = a^{2 + 3 - 5} = a^{0} = 1
\]
Thus, we have:
\[
\frac{a^{2} + 3a + 1 + a^{-5}}{6} \geq 1 \implies a^{2} + 3a + 1 + a^{-5} \geq 6
\]
### Step 6: Conclusion
This shows that \( f(a) \geq 6 \) for all \( a > 0 \). Therefore, the least integral value of \( f(x) \) is:
\[
\boxed{6}
\]
To find the least integral value of the function
\[
f(x) = \frac{(x-1)^{7} + 3(x-1)^{6} + (x-1)^{5} + 1}{(x-1)^{5}}
\]
for \( x > 1 \), we can follow these steps:
...
Topper's Solved these Questions
INEQUALITIES INVOLVING MEANS
CENGAGE ENGLISH|Exercise Comprehension|2 Videos
INEQUALITIES INVOLVING MEANS
CENGAGE ENGLISH|Exercise Illustration|29 Videos
INEQUALITIES AND MODULUS
CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
INTEGRALS
CENGAGE ENGLISH|Exercise All Questions|764 Videos
Similar Questions
Explore conceptually related problems
Find the smallest integral value of x satisfying (x-2)^(x^2-6x+8))>1
The least positive integral value of x for which ""^(10)C_(x-1)gt2(""^(10)C_(x)) is
Find the smallest integral value of x satisfying (x-2)^(x^(2)-6x+8) gt 1 .
The maximum value of f(x)=x/(1+4x+x^2) is -1/4 (b) -1/3 (c) 1/6 (d) 1/6
If (x^(2)-5x+7)/(x-1)^(3)=A/(x-1)+B/(x-1)^(2)+C/(x-1)^(3) " then " A+B-C=
If (x-2)/3=(2x-1)/3-1, then x= (a) 2 (b) 4 (c) 6 (d) 8
The maximum integral values of x in the domain of f (x) =log _(10)(log _(1//3)(log _(4) (x-5)) is : (a). 5 (b). 7 (c). 8 (d). 9
Solve the equation (12x-1)(6x-1)(4x-1)(3x-1)=5
The maximum value of f(x)=x/(4-x+x^2) on [-1,1] is (a) 1/4 (b) -1/3 (c) 1/6 (d) 1/5
The maximum value of f(x)=x/(4+x+x^2) on [-1,1] is (a) 1/4 (b) -1/3 (c) 1/6 (d) 1/5
CENGAGE ENGLISH-INEQUALITIES INVOLVING MEANS -Jee Advanced (Single