Home
Class 12
MATHS
If x(1), x(2) and x(3) are the positive ...

If `x_(1)`, `x_(2)` and `x_(3)` are the positive roots of the equation `x^(3)-6x^(2)+3px-2p=0`, `p inR`, then the value of `sin^(-1)((1)/(x_(1))+(1)/(x_(2)))+cos^(-1)((1)/(x_(2))+(1)/(x_(3)))-tan^(-1)((1)/(x_(3))+(1)/(x_(1)))` is equal to

A

`(pi)/(4)`

B

`(pi)/(2)`

C

`(3pi)/(4)`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given polynomial equation and the expressions involving the roots. Let's break it down step by step. ### Step 1: Understand the Given Equation The equation is given as: \[ x^3 - 6x^2 + 3px - 2p = 0 \] where \(x_1\), \(x_2\), and \(x_3\) are the positive roots. ### Step 2: Apply Vieta's Formulas From Vieta's formulas, we know: - \(x_1 + x_2 + x_3 = 6\) - \(x_1 x_2 + x_2 x_3 + x_3 x_1 = 3p\) - \(x_1 x_2 x_3 = 2p\) ### Step 3: Express \(p\) in Terms of Roots From the equations above, we can express \(p\) in terms of the roots: 1. From \(x_1 + x_2 + x_3 = 6\), we have: \[ x_1 + x_2 + x_3 = 6 \quad \text{(1)} \] 2. From \(x_1 x_2 x_3 = 2p\), we can express \(p\): \[ p = \frac{x_1 x_2 x_3}{2} \quad \text{(2)} \] 3. From \(x_1 x_2 + x_2 x_3 + x_3 x_1 = 3p\), we can express \(p\) again: \[ p = \frac{x_1 x_2 + x_2 x_3 + x_3 x_1}{3} \quad \text{(3)} \] ### Step 4: Analyze the Roots Since \(x_1\), \(x_2\), and \(x_3\) are positive, we can assume \(x_1 = x_2 = x_3 = 2\) (as a potential solution that satisfies \(x_1 + x_2 + x_3 = 6\)). ### Step 5: Calculate \(p\) Substituting \(x_1 = x_2 = x_3 = 2\) into equation (2): \[ p = \frac{2 \cdot 2 \cdot 2}{2} = 4 \] ### Step 6: Substitute Values into the Expression Now we need to evaluate: \[ \sin^{-1}\left(\frac{1}{x_1} + \frac{1}{x_2}\right) + \cos^{-1}\left(\frac{1}{x_2} + \frac{1}{x_3}\right) - \tan^{-1}\left(\frac{1}{x_3} + \frac{1}{x_1}\right) \] Substituting \(x_1 = x_2 = x_3 = 2\): 1. \(\frac{1}{x_1} + \frac{1}{x_2} = \frac{1}{2} + \frac{1}{2} = 1\) 2. \(\frac{1}{x_2} + \frac{1}{x_3} = \frac{1}{2} + \frac{1}{2} = 1\) 3. \(\frac{1}{x_3} + \frac{1}{x_1} = \frac{1}{2} + \frac{1}{2} = 1\) ### Step 7: Evaluate the Inverse Functions Now substituting these values: 1. \(\sin^{-1}(1) = \frac{\pi}{2}\) 2. \(\cos^{-1}(1) = 0\) 3. \(\tan^{-1}(1) = \frac{\pi}{4}\) ### Step 8: Combine the Results Now we combine the results: \[ \frac{\pi}{2} + 0 - \frac{\pi}{4} = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4} \] ### Final Answer Thus, the value of the expression is: \[ \frac{\pi}{4} \]

To solve the problem, we need to analyze the given polynomial equation and the expressions involving the roots. Let's break it down step by step. ### Step 1: Understand the Given Equation The equation is given as: \[ x^3 - 6x^2 + 3px - 2p = 0 \] where \(x_1\), \(x_2\), and \(x_3\) are the positive roots. ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Comprehension|2 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Illustration|29 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos

Similar Questions

Explore conceptually related problems

Solve cot^(-1) ((3x^(2) + 1)/(x)) = cot^(-1) ((1 - 3x^(2))/(x)) - tan^(-1) 6x

Solve 3sin^(-1)((2x)/(1+x^2))-4cos^(-1)((1-x^2)/(1+x^2))+2tan^(-1)((2x)/(1-x^2))=pi/3

If x_(1),x_(2),x_(3),…,x_(n) are the roots of the equation x^(n)+ax+b=0 , the value of (x_(1)-x_(2))(x_(1)-x_(3))(x_(1)-x_(4))…….(x_(1)-x_(n)) is

If x_(1),x_(2),x_(3),.,x_(n) are the roots of the equation x^(n)+ax+b=0 , the value of (x_(1)-x_(2))(x_(1)-x_(3))(x_(1)-x_(4))…….(x_(1)-x_(n)) is

If -1lexle0 then sin{tan^(-1)((1-x^(2))/(2x))-cos^(-1)((1-x^(2))/(1+x^(2)))} is equal to

If 3sin^(-1)((2x)/(1+x^2))-4cos^(-1)((1-x^2)/(1+x^2))+2tan^(-1)((2x)/(1-x^2))=pi/3, then x is equal to

If x_(1),x_(2) "and" y_(1),y_(2) are the roots of the equations 3x^(2) -18x+9=0 "and" y^(2)-4y+2=0 the value of the determinant |{:(x_(1)x_(2),y_(1)y_(2),1),(x_(1)+x_(2),y_(1)+y_(2),2),(sin(pix_(1)x_(2)),cos (pi//2y_(1)y_(2)),1):}| is

Find the value of int_(0)^(1)root(3)(2x^(3)-3x^(2)-x+1)dx .

Let x_(1),x_(2), x_(3) be roots of equation x^3 + 3x + 5 = 0 . What is the value of the expression (x_(1) + 1/x_(1))(x_(2)+1/x_(2)) (x_(3)+1/x_(3)) ?

If int((x^(2)-1)dx)/((x^(4)+3x^(2)+1)Tan^(-1)((x^(2)+1)/(x)))=klog|tan^(-1)""(x^(2)+1)/x|+c , then k is equal to