Home
Class 12
MATHS
If a,b,x,y are real number and x,y gt 0,...

If `a,b,x,y` are real number and `x,y gt 0`, then `(a^(2))/(x)+(b^(2))/(y) ge ((a+b)^(2))/(x+y)` so on solving it we have `(ay-bx)^(2) ge 0`.
Similarly, we can extend the inequality to three pairs of numbers, i.e,
`(a^(2))/(x)+(b^(2))/(y)+(c^(2))/(z) ge ((a+b+c)^(2))/(x+y+z)`
Now use this result to solve the following questions.
If `abc=1` , then the minimum value of
`(1)/(a^(3)(b+c))+(1)/(b^(3)(a+c))+(1)/(c^(3)(a+b))` is

A

`3`

B

`3//2`

C

`6`

D

`9`

Text Solution

Verified by Experts

The correct Answer is:
B

`(b)` `(1)/(a^(3)(b+c))+(1)/(b^(3)(a+c))+(1)/(c^(3)(a+b))`
`=(1//a^(2))/(ab+ac)+(1//b^(2))/(ab+bc)+(1//c^(2))/(ac+bc)`
`ge (((1)/(a)+(1)/(b)+(1)/(c ))^(2))/(2(ab+bc+ac))` ……….`(i)`
Now `((1)/(a)+(1)/(b)+(1)/(c ))^(2)=((ab+bc+ac)^(2))/((abc)^(2))`
`=(ab+bc+ac)^(2)` (as `abc=1`)
`:.` From `(i)`, `(1)/(a^(3)(b+c))+(1)/(b^(3)(a+c))+(1)/(c^(3)(a+b))`
` ge((ab+bc+ac))/(2)`
`ge(3*3sqrt((abc)^(2)))/(2)` (using `A.M. ge G.M.`)
`ge (3)/(2)`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Illustration|29 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Example 1|1 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE ENGLISH|Exercise Jee Advanced (Single|1 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|764 Videos

Similar Questions

Explore conceptually related problems

If a, b, x, y are positive natural numbers such that (1)/(x) + (1)/(y) = 1 then prove that (a^(x))/(x) + (b^(y))/(y) ge ab .

Solve : {:((a)/(x)-(b)/(y)=0),((ab^(2))/(x)+(a^(2)b)/(y)=a^(2)+b^(2)):}

If x,y,z gt 0 and x + y + z = 1, the prove that (2x)/(1 - x) + (2y)/(1 - y) + (2z)/(1 - z) ge 3 .

Given that x,y and b real are real numbers and x ge y , b gt 0 , then

Solve the following system of equations in xa n dy a x+b y=1 b x+a y=((a+b)^2)/(a^2+b^2)-1or ,b x+a y=(2a b)/(a^2+b^2)

Solve the following system of equations by using determinants: x+y+z=1 , a x+b y+c z=k , a^2x+b^2y+c^2z=k^2 .

Solve the following system of equations by using determinants: x+y+z=1 , a x+b y+c z=k , a^2x+b^2y+c^2z=k^2

If a, b, c, x, y, z are real and a^(2)+b^(2) + c^(2)=25, x^(2)+y^(2)+z^(2)=36 and ax+by+cz=30 , then (a+b+c)/(x+y+z) is equal to :

If a, b, c, x, y, z are real and a^(2)+b^(2) + c^(2)=25, x^(2)+y^(2)+z^(2)=36 and ax+by+cz=30 , then (a+b+c)/(x+y+z) is equal to :

If a, b and c are non - zero real numbers and if system of equations (a-1)x=y+z, (b-1)y=z+x and (c-1)z=x+y have a non - trivial solutin, then (3)/(2a)+(3)/(2b)+(3)/(2c) is equal to