Home
Class 12
MATHS
If A=[{:(1,0,0),(1,0,1),(0,1,0):}], then...

If `A=[{:(1,0,0),(1,0,1),(0,1,0):}]`, then

A

`A^(3)-A^(2)=A-I`

B

`Det(A^(2010)-I)=0`

C

`A^(50)=[{:(1,0,0),(25,1,0),(25,0,1):}]`

D

`A^(50)=[{:(1,1,0),(25,1,0),(25,0,1):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the adjoint and inverse of the matrix \( A \) given as: \[ A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \] ### Step 1: Find the Determinant of Matrix A To find the adjoint and inverse of a matrix, we first need to calculate its determinant. \[ \text{det}(A) = 1 \cdot \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} - 0 + 0 \] Calculating the 2x2 determinant: \[ \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} = (0 \cdot 0) - (1 \cdot 1) = -1 \] Thus, \[ \text{det}(A) = 1 \cdot (-1) = -1 \] ### Step 2: Find the Adjoint of Matrix A The adjoint of a matrix is the transpose of its cofactor matrix. We will find the cofactor matrix first. 1. **Cofactor of \( a_{11} \)**: \[ C_{11} = \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} = -1 \] 2. **Cofactor of \( a_{12} \)**: \[ C_{12} = -\begin{vmatrix} 1 & 1 \\ 0 & 0 \end{vmatrix} = 0 \] 3. **Cofactor of \( a_{13} \)**: \[ C_{13} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1 \] 4. **Cofactor of \( a_{21} \)**: \[ C_{21} = -\begin{vmatrix} 0 & 0 \\ 1 & 0 \end{vmatrix} = 0 \] 5. **Cofactor of \( a_{22} \)**: \[ C_{22} = \begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix} = 0 \] 6. **Cofactor of \( a_{23} \)**: \[ C_{23} = -\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = -1 \] 7. **Cofactor of \( a_{31} \)**: \[ C_{31} = \begin{vmatrix} 0 & 0 \\ 1 & 0 \end{vmatrix} = 0 \] 8. **Cofactor of \( a_{32} \)**: \[ C_{32} = -\begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} = -1 \] 9. **Cofactor of \( a_{33} \)**: \[ C_{33} = \begin{vmatrix} 1 & 0 \\ 1 & 0 \end{vmatrix} = 0 \] Now, we can construct the cofactor matrix: \[ C = \begin{pmatrix} -1 & 0 & 1 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix} \] Taking the transpose to get the adjoint: \[ \text{adj}(A) = C^T = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix} \] ### Step 3: Find the Inverse of Matrix A The inverse of a matrix \( A \) can be found using the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Since \( \text{det}(A) = -1 \): \[ A^{-1} = -1 \cdot \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix} \] ### Final Result The adjoint of matrix \( A \) is: \[ \text{adj}(A) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix} \]

To solve the problem, we need to find the adjoint and inverse of the matrix \( A \) given as: \[ A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|27 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Matrix Type|5 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Exercises|65 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(1,0,0),(0,1,0),(a,b,-1):}] then A^(2) is equal to

If A=[{:(1,0,0),(0,1,0),(a,b,-1):}] then A^(2) is equal to

If A^(-1)=[{:(,1,-1,0),(,0,-2,1),(,0,0,-1):}] then

Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-2)+A^(2)-I for n ge 3 . And trace of a square matrix X is equal to the sum of elements in its proncipal diagonal. Further consider a matrix underset(3xx3)(uu) with its column as uu_(1), uu_(2), uu_(3) such that A^(50) uu_(1)=[(1),(25),(25)], A^(50) uu_(2)=[(0),(1),(0)], A^(50) uu_(3)=[(0),(0),(1)] Then answer the following question : Trace of A^(50) equals

Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-2)+A^(2)-I for n ge 3 . And trace of a square matrix X is equal to the sum of elements in its proncipal diagonal. Further consider a matrix underset(3xx3)(uu) with its column as uu_(1), uu_(2), uu_(3) such that A^(50) uu_(1)=[(1),(25),(25)], A^(50) uu_(2)=[(0),(1),(0)], A^(50) uu_(3)=[(0),(0),(1)] Then answer the following question : The value of |uu| equals

If A=|{:(1,0,0),(0,1,0),(0,0,1):}|" and A"=[{:(0,-3,4),(1,2,3),(0,5,5):}]," then find "(I-A)^(-1)

if A=[{:(3,-1,2),(0,5,-3),(1,-2,7):}]and B=[{:(1,0,0),(0,1,0),(0,0,1):}], find whether AB=BA or Not .

if [{:(1,2,a),(0,1,4),(0,0,1):}]^n=[{:(1,18,2007),(0,1,36),(0,0,1):}] then find the value of n

If A=[(1,0,0),(0,1,0),(1,b,0] then A^2 is equal is (A) unit matrix (B) null matrix (C) A (D) -A

Let a be a 3xx3 matric such that [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),(1,0,0),(0,1,0)] , then find A^(-1) .

CENGAGE ENGLISH-MATRICES-Multiple Correct Answer
  1. Let B is an invertible square matrix and B is the adjoint of matrix A ...

    Text Solution

    |

  2. First row of a matrix A is [1,3,2]. If adj A=[(-2,4,alpha),(-1,2,1),...

    Text Solution

    |

  3. Let A be a square matrix of order 3 satisfies the relation A^(3)-6A^(2...

    Text Solution

    |

  4. Which of the following matrices have eigen values as 1 and -1 ? (a) [...

    Text Solution

    |

  5. Let Ma n dN be two 3xx3 non singular skew-symmetric matrices such that...

    Text Solution

    |

  6. Let omega be a complex cube root of unity with omega!=1a n dP=[p(i j)]...

    Text Solution

    |

  7. For 3xx3 matrices M \ a n d \ N , which of the following statement (s)...

    Text Solution

    |

  8. Let M be a 2xx2 symmetric matrix with integer entries. Then M is inver...

    Text Solution

    |

  9. Let m and N be two 3x3 matrices such that MN=NM. Further if M!=N^2 and...

    Text Solution

    |

  10. Let X \ a n d \ Y be two arbitrary, 3xx3 , non-zero, skew-symmetric ma...

    Text Solution

    |

  11. Let p=[(3,-1,-2),(2,0,alpha),(3,-5,0)], where alpha in RR. Suppose Q=[...

    Text Solution

    |

  12. Which of the following is(are) NOT of the square of a 3xx3 matrix with...

    Text Solution

    |

  13. Let S be the set of all column matrices [(b(1)),(b(2)),(b(3))] such th...

    Text Solution

    |

  14. If A=[{:(1,0,0),(1,0,1),(0,1,0):}], then

    Text Solution

    |

  15. If the elements of a matrix A are real positive and distinct such that...

    Text Solution

    |

  16. If A=[{:(8,-6,2),(-6,7,-4),(2,-4,3):}] and X is a non zero column matr...

    Text Solution

    |

  17. If A, B are two square matrices of same order such that A+B=AB and I i...

    Text Solution

    |

  18. If A is a non-singular matrix of order nxxn such that 3ABA^(-1)+A=2A^(...

    Text Solution

    |

  19. If the matrix A and B are of 3xx3 and (I-AB) is invertible, then which...

    Text Solution

    |

  20. If A is a square matrix such that A*(AdjA)=[{:(4,0,0),(0,4,0),(0,0,4):...

    Text Solution

    |