Home
Class 12
MATHS
If A=[{:(8,-6,2),(-6,7,-4),(2,-4,3):}] a...

If `A=[{:(8,-6,2),(-6,7,-4),(2,-4,3):}]` and `X` is a non zero column matrix such that `AX=lambdaX`, where `lambda` is a scalar, then values of `lambda` can be

A

`3`

B

`6`

C

`12`

D

`15`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( \lambda \) such that \( AX = \lambda X \) for the given matrix \( A \) and a non-zero column matrix \( X \). This leads us to find the eigenvalues of the matrix \( A \). Given: \[ A = \begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix} \] We need to find the values of \( \lambda \) such that the equation \( AX = \lambda X \) holds true. ### Step 1: Set up the equation We can rewrite the equation \( AX = \lambda X \) as: \[ AX - \lambda X = 0 \] This can be expressed as: \[ (A - \lambda I)X = 0 \] where \( I \) is the identity matrix of the same size as \( A \). ### Step 2: Formulate the matrix \( A - \lambda I \) The identity matrix \( I \) for a 3x3 matrix is: \[ I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Thus, \( \lambda I \) is: \[ \lambda I = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix} \] Now, we can compute \( A - \lambda I \): \[ A - \lambda I = \begin{pmatrix} 8 - \lambda & -6 & 2 \\ -6 & 7 - \lambda & -4 \\ 2 & -4 & 3 - \lambda \end{pmatrix} \] ### Step 3: Set the determinant to zero To find the eigenvalues, we need to set the determinant of \( A - \lambda I \) to zero: \[ \text{det}(A - \lambda I) = 0 \] ### Step 4: Calculate the determinant We will compute the determinant: \[ \text{det}(A - \lambda I) = \begin{vmatrix} 8 - \lambda & -6 & 2 \\ -6 & 7 - \lambda & -4 \\ 2 & -4 & 3 - \lambda \end{vmatrix} \] Using the determinant formula for a 3x3 matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] where \( a, b, c, d, e, f, g, h, i \) are the elements of the matrix. Applying this to our matrix: \[ = (8 - \lambda)((7 - \lambda)(3 - \lambda) - (-4)(-4)) - (-6)(-6(3 - \lambda) - (-4)(2)) + 2(-6(-4) - (7 - \lambda)(2)) \] ### Step 5: Simplify the determinant expression After calculating and simplifying, we will get a polynomial in \( \lambda \). The final polynomial will be: \[ -\lambda^3 + 18\lambda^2 - 45\lambda = 0 \] ### Step 6: Factor the polynomial Factoring out \( \lambda \): \[ \lambda(\lambda^2 - 18\lambda + 45) = 0 \] This gives us \( \lambda = 0 \) or solving the quadratic equation \( \lambda^2 - 18\lambda + 45 = 0 \). ### Step 7: Solve the quadratic equation Using the quadratic formula: \[ \lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1, b = -18, c = 45 \): \[ \lambda = \frac{18 \pm \sqrt{(-18)^2 - 4 \cdot 1 \cdot 45}}{2 \cdot 1} \] \[ = \frac{18 \pm \sqrt{324 - 180}}{2} \] \[ = \frac{18 \pm \sqrt{144}}{2} \] \[ = \frac{18 \pm 12}{2} \] This gives us: \[ \lambda = \frac{30}{2} = 15 \quad \text{and} \quad \lambda = \frac{6}{2} = 3 \] ### Final Result The values of \( \lambda \) are \( 0, 3, \) and \( 15 \).

To solve the problem, we need to find the values of \( \lambda \) such that \( AX = \lambda X \) for the given matrix \( A \) and a non-zero column matrix \( X \). This leads us to find the eigenvalues of the matrix \( A \). Given: \[ A = \begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|27 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Matrix Type|5 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Exercises|65 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

If A= [[3,2,2],[2,4,1],[-2,-4,-1]] and X,Y are two non-zero column vectors such that AX=lambda X, AY=muY , lambdanemu, find angle between X and Y.

A matrix A = ({:(2,3),(5,-2):}) is such that A^(-1)= lambda A then what is the value of lambda .

If A=[(1,-2,1),(2,lambda,-2),(1,3,-3)] be the adjoint matrix of matrix B such that |B|=9 , then the value of lambda is equal to

If A = [(1,2), (-1, 4)] and theta be the angle between the two non-zero column vectors X such that AX = lambda X for some scalar lambda, then 9 sec^2 theta is equal to

(3+omega + 3 omega^(2))^(4)= lambda omega , then value of lambda is :

If the equation 3x^2 + 3y^2 + 6lambdax + 2lambda = 0 represents a circle, then the value of lambda . lies in

If x - lambda is a factor of x^(4)-lambda x^(3)+2x+6 . Then the value of lambda is

If the curves C_1 : y= (In x)/x and C_2 : y=lambdax^2 (where lambda is constant) touches each other, then the value of lambda is

Let A= [[1,4],[3,2]] If theta is the angle between the two non- zero column vectors X such that AX = lambda X for some scalar lambda then tan theta is equal to

If the lines x - 2y - 6 = 0 , 3x + y - 4=0 and lambda x +4y + lambda^(2) = 0 are concurrent , then value of lambda is

CENGAGE ENGLISH-MATRICES-Multiple Correct Answer
  1. Let B is an invertible square matrix and B is the adjoint of matrix A ...

    Text Solution

    |

  2. First row of a matrix A is [1,3,2]. If adj A=[(-2,4,alpha),(-1,2,1),...

    Text Solution

    |

  3. Let A be a square matrix of order 3 satisfies the relation A^(3)-6A^(2...

    Text Solution

    |

  4. Which of the following matrices have eigen values as 1 and -1 ? (a) [...

    Text Solution

    |

  5. Let Ma n dN be two 3xx3 non singular skew-symmetric matrices such that...

    Text Solution

    |

  6. Let omega be a complex cube root of unity with omega!=1a n dP=[p(i j)]...

    Text Solution

    |

  7. For 3xx3 matrices M \ a n d \ N , which of the following statement (s)...

    Text Solution

    |

  8. Let M be a 2xx2 symmetric matrix with integer entries. Then M is inver...

    Text Solution

    |

  9. Let m and N be two 3x3 matrices such that MN=NM. Further if M!=N^2 and...

    Text Solution

    |

  10. Let X \ a n d \ Y be two arbitrary, 3xx3 , non-zero, skew-symmetric ma...

    Text Solution

    |

  11. Let p=[(3,-1,-2),(2,0,alpha),(3,-5,0)], where alpha in RR. Suppose Q=[...

    Text Solution

    |

  12. Which of the following is(are) NOT of the square of a 3xx3 matrix with...

    Text Solution

    |

  13. Let S be the set of all column matrices [(b(1)),(b(2)),(b(3))] such th...

    Text Solution

    |

  14. If A=[{:(1,0,0),(1,0,1),(0,1,0):}], then

    Text Solution

    |

  15. If the elements of a matrix A are real positive and distinct such that...

    Text Solution

    |

  16. If A=[{:(8,-6,2),(-6,7,-4),(2,-4,3):}] and X is a non zero column matr...

    Text Solution

    |

  17. If A, B are two square matrices of same order such that A+B=AB and I i...

    Text Solution

    |

  18. If A is a non-singular matrix of order nxxn such that 3ABA^(-1)+A=2A^(...

    Text Solution

    |

  19. If the matrix A and B are of 3xx3 and (I-AB) is invertible, then which...

    Text Solution

    |

  20. If A is a square matrix such that A*(AdjA)=[{:(4,0,0),(0,4,0),(0,0,4):...

    Text Solution

    |