Home
Class 12
MATHS
Let f(x) be defined on [-2,2] and be giv...

Let `f(x)` be defined on `[-2,2]` and be given by
`f(x)={(-1",",-2 le x le 0),(x-1",",0 lt x le 2):} and g(x)=f(|x|) +|f(x)|`.
Then find `g(x)`.

Text Solution

AI Generated Solution

To find the function \( g(x) = f(|x|) + |f(x)| \) given the piecewise function \( f(x) \), we will follow these steps: ### Step 1: Define the function \( f(x) \) The function \( f(x) \) is defined as follows: \[ f(x) = \begin{cases} -1 & \text{if } -2 \leq x \leq 0 \\ ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.1|15 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.2|5 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Matrix Match Type)|1 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be defined on [-2,2] and be given by f(x) = {−1;−2≤x≤0} and f(x) = {x−1 ; 0 < x ≤ 2 } ​ . and g(x)= f(|x|)+|f(x)| Find g(x)

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).

f(x)={{:(x-1",", -1 le xle 0),(x^(2)",",0 lt x le 1):} and g(x)=sinx. Find h(x)=f(abs(g(x)))+abs(f(g(x))).

If f(x)={:{(3x^2+12x-1"," -1le x le2),(37-x ","2 lt x le 3):} then

Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f ^(-1) (x) is discontinous at x=

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

Let a function f(x) defined on [3,6] be given by f(x)={{:(,log_(e)[x],3 le x lt5),(,|log_(e)x|,5 le x lt 6):} then f(x) is

Suppose f:[-2,2] to R is defined by f(x)={{:(-1 " for " -2 le x le 0),(x-1 " for " 0 le x le 2):} , then {x in [-2,2]: x le 0 and f(|x|)=x}=

Let f(x) and g(x) be two functions given by f(x)=-1|x-1|,-1 le x le 3 and g(x)=2-|x+1|,-2 le x le 2 Then,

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is