Home
Class 12
MATHS
Identify the type of the functions: f(x)...

Identify the type of the functions: `f(x)=log((x^4+x^2+1)/(x^2+x+1))`

A

Odd

B

Even

C

Neither

D

Both

Text Solution

AI Generated Solution

The correct Answer is:
To identify the type of the function \( f(x) = \log\left(\frac{x^4 + x^2 + 1}{x^2 + x + 1}\right) \), we need to determine whether it is an odd function, an even function, or neither. ### Step-by-Step Solution: 1. **Definition of Even and Odd Functions**: - A function \( f(x) \) is **even** if \( f(-x) = f(x) \) for all \( x \). - A function \( f(x) \) is **odd** if \( f(-x) = -f(x) \) for all \( x \). 2. **Calculate \( f(-x) \)**: - Substitute \(-x\) into the function: \[ f(-x) = \log\left(\frac{(-x)^4 + (-x)^2 + 1}{(-x)^2 + (-x) + 1}\right) \] - Simplifying the terms: - \((-x)^4 = x^4\) - \((-x)^2 = x^2\) - Therefore, the numerator becomes \( x^4 + x^2 + 1 \). - The denominator becomes \( x^2 - x + 1 \). - Thus, we have: \[ f(-x) = \log\left(\frac{x^4 + x^2 + 1}{x^2 - x + 1}\right) \] 3. **Compare \( f(-x) \) with \( f(x) \)**: - We already have: \[ f(x) = \log\left(\frac{x^4 + x^2 + 1}{x^2 + x + 1}\right) \] - Now, we need to check if \( f(-x) \) is equal to \( f(x) \) or \(-f(x)\): - \( f(-x) \) is: \[ \log\left(\frac{x^4 + x^2 + 1}{x^2 - x + 1}\right) \] - Clearly, \( f(-x) \neq f(x) \) because the denominators are different. - Now, check if \( f(-x) = -f(x) \): - For \( f(-x) = -f(x) \), we would need: \[ \log\left(\frac{x^4 + x^2 + 1}{x^2 - x + 1}\right) = -\log\left(\frac{x^4 + x^2 + 1}{x^2 + x + 1}\right) \] - This implies: \[ \frac{x^4 + x^2 + 1}{x^2 - x + 1} = \frac{1}{\frac{x^4 + x^2 + 1}{x^2 + x + 1}} \] - This equation does not hold true for all \( x \). 4. **Conclusion**: - Since \( f(-x) \neq f(x) \) and \( f(-x) \neq -f(x) \), we conclude that the function \( f(x) \) is neither even nor odd. ### Final Answer: The function \( f(x) = \log\left(\frac{x^4 + x^2 + 1}{x^2 + x + 1}\right) \) is neither even nor odd.

To identify the type of the function \( f(x) = \log\left(\frac{x^4 + x^2 + 1}{x^2 + x + 1}\right) \), we need to determine whether it is an odd function, an even function, or neither. ### Step-by-Step Solution: 1. **Definition of Even and Odd Functions**: - A function \( f(x) \) is **even** if \( f(-x) = f(x) \) for all \( x \). - A function \( f(x) \) is **odd** if \( f(-x) = -f(x) \) for all \( x \). ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.11|7 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.12|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.9|13 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Identify the type of the functions: f(x)={g(x)-g(-x)}^(3)

The domain of the function f(x)=(log)_(3+x)(x^2-1) is

The domain of the function f(x) = (x^(2) + 1)/(ln (x^(2) + 1)) is

f(x)=sqrt(log((3x-x^(2))/(x-1)))

The function f(x)=sin(log(x+ sqrt(x^2+1))) ​

Find the range of the function f(x)=cot^(-1)(log)_(0. 5)(x^4-2x^2+3)

Find the range of the function f(x)=cot^(-1)(log)_(0. 5)(x^4-2x^2+3)

The function f(x)=[log (x-1)]^(2) (x-1)^(2) has :

Identify the following functions whether odd or even or neither: f(x)=log((x^4+x^2+1)/(x^2+x+1))

The function f(x)=cos(log(x+sqrt(x^2+1))) is :