Home
Class 12
MATHS
Identify the following functions : f(x)=...

Identify the following functions : `f(x)=xg(x)g(-x)+"tan"(sinx)`

A

Odd

B

Even

C

Neither

D

Both

Text Solution

AI Generated Solution

The correct Answer is:
To identify the function \( f(x) = x g(x) g(-x) + \tan(\sin x) \), we need to analyze its behavior under the transformation \( x \to -x \). ### Step-by-Step Solution: 1. **Write the function**: \[ f(x) = x g(x) g(-x) + \tan(\sin x) \] 2. **Find \( f(-x) \)**: Substitute \( -x \) into the function: \[ f(-x) = -x g(-x) g(x) + \tan(\sin(-x)) \] 3. **Simplify \( \tan(\sin(-x)) \)**: Using the property of sine, \( \sin(-x) = -\sin(x) \): \[ \tan(\sin(-x)) = \tan(-\sin(x)) = -\tan(\sin(x)) \] 4. **Combine the terms**: Now, substituting back into \( f(-x) \): \[ f(-x) = -x g(-x) g(x) - \tan(\sin x) \] 5. **Factor out the negative sign**: We can factor out a negative sign from the entire expression: \[ f(-x) = -\left( x g(-x) g(x) + \tan(\sin x) \right) \] This can be rewritten as: \[ f(-x) = -f(x) \] 6. **Conclusion**: Since \( f(-x) = -f(x) \), this indicates that the function \( f(x) \) is an **odd function**. ### Final Answer: The function \( f(x) \) is an odd function. ---

To identify the function \( f(x) = x g(x) g(-x) + \tan(\sin x) \), we need to analyze its behavior under the transformation \( x \to -x \). ### Step-by-Step Solution: 1. **Write the function**: \[ f(x) = x g(x) g(-x) + \tan(\sin x) \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.11|7 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.12|9 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.9|13 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Identify the following functions: f(x)=cos["x"]+[(sinx)/2] where [dot] denotes the greatest integer function.

Find the domain of each of the following functions: f(x)=e^(x+sinx)

Identify the type of the functions: f(x)={g(x)-g(-x)}^(3)

The function f(x)=|sinx|

Separate the intervals of concavity of the following functions (i) f(x)= sin^(-1)x ,(ii) f(x)=x+sinx

Find the period (if periodic) of the following function f(x)=e^(log(sinx))+tan^3x-cos e c(3x-5)

Find the domain and range of the following function: f(x)=log_([x-1])sinx, where [ ] denotes greatest integer function.

If f(x)=x and g(x)=|x| , then define the following functions: (i) f+g " "(ii) f-g (iii) f*g" "(iv) (f)/(g)

Identify the following functions whether odd or even or neither: f(x)=xg(x)g(-x)+"tan"(sinx)

The function f(x)= tan x - x