Home
Class 12
MATHS
Let f(x) =(alphax)/(x+1) Then the value ...

Let `f(x) =(alphax)/(x+1)` Then the value of `alpha` for which `f(f(x) = x` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \alpha \) for which \( f(f(x)) = x \), where \( f(x) = \frac{\alpha x}{x + 1} \). ### Step-by-step Solution: 1. **Define the function**: \[ f(x) = \frac{\alpha x}{x + 1} \] 2. **Find \( f(f(x)) \)**: We need to substitute \( f(x) \) into itself: \[ f(f(x)) = f\left(\frac{\alpha x}{x + 1}\right) \] Now, replace \( x \) in the function with \( \frac{\alpha x}{x + 1} \): \[ f\left(\frac{\alpha x}{x + 1}\right) = \frac{\alpha \left(\frac{\alpha x}{x + 1}\right)}{\frac{\alpha x}{x + 1} + 1} \] 3. **Simplify the denominator**: The denominator becomes: \[ \frac{\alpha x}{x + 1} + 1 = \frac{\alpha x + (x + 1)}{x + 1} = \frac{(\alpha + 1)x + 1}{x + 1} \] 4. **Substituting back into the function**: Now, substituting this back into our expression for \( f(f(x)) \): \[ f(f(x)) = \frac{\alpha \left(\frac{\alpha x}{x + 1}\right)}{\frac{(\alpha + 1)x + 1}{x + 1}} = \frac{\alpha^2 x}{(\alpha + 1)x + 1} \] 5. **Set \( f(f(x)) = x \)**: Now, we set \( f(f(x)) \) equal to \( x \): \[ \frac{\alpha^2 x}{(\alpha + 1)x + 1} = x \] 6. **Cross-multiply to eliminate the fraction**: \[ \alpha^2 x = x \cdot ((\alpha + 1)x + 1) \] Expanding the right side gives: \[ \alpha^2 x = (\alpha + 1)x^2 + x \] 7. **Rearranging the equation**: Rearranging gives us: \[ (\alpha + 1)x^2 + (1 - \alpha^2)x = 0 \] 8. **Factoring out \( x \)**: This can be factored as: \[ x \left((\alpha + 1)x + (1 - \alpha^2)\right) = 0 \] For this equation to hold for all \( x \), the quadratic must equal zero, which leads us to: \[ (\alpha + 1) = 0 \quad \text{and} \quad (1 - \alpha^2) = 0 \] 9. **Solving the equations**: From \( \alpha + 1 = 0 \), we get: \[ \alpha = -1 \] From \( 1 - \alpha^2 = 0 \), we get: \[ \alpha^2 = 1 \Rightarrow \alpha = 1 \text{ or } \alpha = -1 \] 10. **Conclusion**: The values of \( \alpha \) for which \( f(f(x)) = x \) are: \[ \alpha = 1 \quad \text{or} \quad \alpha = -1 \]

To solve the problem, we need to find the value of \( \alpha \) for which \( f(f(x)) = x \), where \( f(x) = \frac{\alpha x}{x + 1} \). ### Step-by-step Solution: 1. **Define the function**: \[ f(x) = \frac{\alpha x}{x + 1} \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.13|7 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.14|13 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.11|7 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=(alphax)/(x+1),x!=-1. Then write the value of alpha satisfying f(f(x))=x for all x!=-1.

Let f(x)=(alphax)/((x+1)),x!=-1. for what value of alpha is f(f(x))=x ? (a) sqrt(2) (b) -sqrt(2) (c) 1 (d) -1

If f(x)=x^2+x+1 , then find the value of 'x' for which f(x-1) =f(x)

If f(x) = (x + 1)/(x-1) , then the value of f{f(3)} is :

Let f(x) = (x)/(1+|x|), x in R , then f is

Let f (x) =(x^(2) +x-1)/(x ^(2) - x+1), then the largest value of f (x) AA x in [-1, 3] is:

If f(x) = (x-1)/(x+1), then f(alphax)=

Let f(x)=a^x-xlna , a>1. Then the complete set of real values of x for which f'(x)>0 is

Let f(x)=x+1 and phi(x)=x-2. Then the value of x satisfying |f(x)+phi(x)|=|f(x)|+|phi(x)| are :

Let f(x^(3)) = x^(4) + x^(5) + x + 1 , then the value of f(8) is