Home
Class 12
MATHS
f(x)={(log(e)x",",0lt x lt 1),(x^(2)-1 "...

`f(x)={(log_(e)x",",0lt x lt 1),(x^(2)-1 ",",x ge 1):}` and `g(x)={(x+1",",x lt 2),(x^(2)-1 ",",x ge 2):}`.
Then find `g(f(x)).`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( g(f(x)) \) where \[ f(x) = \begin{cases} \log_e x & \text{for } 0 < x < 1 \\ x^2 - 1 & \text{for } x \geq 1 \end{cases} \] and \[ g(x) = \begin{cases} x + 1 & \text{for } x < 2 \\ x^2 - 1 & \text{for } x \geq 2 \end{cases} \] we will evaluate \( g(f(x)) \) by considering the two cases for \( f(x) \). ### Step 1: Evaluate \( f(x) \) for \( 0 < x < 1 \) In this case, \( f(x) = \log_e x \). We need to check if \( f(x) < 2 \) or \( f(x) \geq 2 \): - Since \( \log_e x \) is negative for \( 0 < x < 1 \), it follows that \( f(x) < 2 \). Thus, we will use the first case of \( g(x) \): \[ g(f(x)) = g(\log_e x) = \log_e x + 1 \] ### Step 2: Evaluate \( f(x) \) for \( x \geq 1 \) In this case, \( f(x) = x^2 - 1 \). Next, we need to check if \( f(x) < 2 \) or \( f(x) \geq 2 \): - For \( x = 1 \), \( f(1) = 1^2 - 1 = 0 < 2 \). - For \( x = 2 \), \( f(2) = 2^2 - 1 = 3 \geq 2 \). - For \( x > 2 \), \( f(x) = x^2 - 1 \) will also be greater than 2. Thus, we can conclude: - For \( 1 \leq x < 2 \), \( f(x) < 2 \) and we use the first case of \( g(x) \): \[ g(f(x)) = g(x^2 - 1) = (x^2 - 1) + 1 = x^2 \] - For \( x \geq 2 \), \( f(x) \geq 2 \) and we use the second case of \( g(x) \): \[ g(f(x)) = g(x^2 - 1) = (x^2 - 1)^2 - 1 \] ### Final Result Combining both cases, we have: \[ g(f(x)) = \begin{cases} \log_e x + 1 & \text{for } 0 < x < 1 \\ x^2 & \text{for } 1 \leq x < 2 \\ (x^2 - 1)^2 - 1 & \text{for } x \geq 2 \end{cases} \]

To find \( g(f(x)) \) where \[ f(x) = \begin{cases} \log_e x & \text{for } 0 < x < 1 \\ x^2 - 1 & \text{for } x \geq 1 \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.13|7 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.14|13 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.11|7 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

If f(x) ={(x^(3)", " x lt1),(2x-1", " x ge 1):} " and " g(x)={(3x", " x le2),(x^(2)", " x gt 2):} " then find " (f-g)(x).

Let f(x)={(x^(2)-4x+3",",x lt 3),(x-4",",x ge 3):} and g(x)={(x-3",",x lt 4),(x^(2)+2x+2",",x ge 4):} . Describe the function f//g and find its domain.

Let f(x)={(x^(2)-4x+3",",x lt 3),(x-4",",x ge 3):} and g(x)={(x-3",",x lt 4),(x^(2)+2x+2",",x ge 4):} . Describe the function f//g and find its domain.

Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",",0 le x le 4),(-3x-2",",-2 lt x lt 0):} If the domain of g(f(x))" is " [-1, 4], then

Consider the functions f(x)={(x+1",",x le 1),(2x+1",",1lt x le 2):} and g(x)={(x^(2)",", -1 le x lt2),(x+2",",2le x le 3):} The range of the function f(g(x)) is

Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",",0 le x le 4),(-3x-2",",-2 lt x lt 0):} g(f(x)) is not defined if

Let f (x)= [{:(x+1,,, x lt0),((x-1),,, x ge0):}and g (x)=[{:(x+1,,, x lt 0),((x-1)^(2),,, x ge0):} then the number of points where g (f(x)) is not differentiable.

Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",",0 le x le 4),(-3x-2",",-2 lt x lt 0):} If a=2 and b=3, then the range of g(f(x)) is

Let g(x)=1+x-[x] "and " f(x)={{:(-1","x lt 0),(0","x=0),(1","x gt 0):} Then, for all x, find f(g(x)).

Let f(x)= {{:(1+ sin x, x lt 0 ),(x^2-x+1, x ge 0 ):}