Home
Class 12
MATHS
Find the inverse of the function: f:[1, ...

Find the inverse of the function: `f:[1, oo) rarr [1,oo),w h e r ef(x)=2^(x(x-2))`

Text Solution

Verified by Experts

The correct Answer is:
`f^(-1)(x)=1-sqrt(1+log_(2)x)`

`y=2^(x(x-2))`
or ` x^(2)-2x=log_(2)y`
or ` x^(2)-2x-log_(2)y=0`
or `x=1+-sqrt(1+log_(2)y)`
or `f^(-1)(x)=1-sqrt(1+log_(2)x)`
as `f^(-1):[(1)/(2),oo) to (-oo,1]`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.14|13 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.15|8 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.12|9 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Find the inverse of the function: f: R rarr (-oo,1)gi v e nb y\ f(x)=1-2^(-x)

Find the inverse of the function: f:[-1,1]rarr[-1,1] defined by f(x)=x|x|

The function f : (0, oo) rarr [0, oo), f(x) = (x)/(1+x) is

If the function f:[1,oo)rarr[1,oo) is defined by f(x)=2^(x(x-1)),t h e nf^(-1)(x) is (1/2)^(x(x-1)) (b) 1/2(1+sqrt(1+4(log)_2x)) 1/2(1-sqrt(1+(log)_2x) (d) not defined

If the function f:(1,oo)rarr(1,oo) is defined by f(x)=2^(x(x-1)),t h e nf^(-1)(x) is (a) (1/2)^(x(x-1)) (b) 1/2(1+sqrt(1+4(log)_2x)) 1/2(1-sqrt(1+(log)_2x) (d) not defined

If the function f:(1,oo)rarr(1,oo) is defined by f(x)=2^(x(x-1)),t h e nf^(-1)(x) is (1/2)^(x(x-1)) (b) 1/2(1+sqrt(1+4(log)_2x)) 1/2(1-sqrt(1+(log)_2x) (d) not defined

If f : [0, oo) rarr [0, oo) and f(x) = (x^(2))/(1+x^(4)) , then f is

Find the inverse of each of the following functions : f(x) = {{:(x"," -oo lt x lt 1),(x^(2)"," 1 le x le 4),(2x"," 4 lt x lt oo):}

Consider the function f:(-oo, oo) -> (-oo ,oo) defined by f(x) =(x^2 - ax + 1)/(x^2+ax+1) ;0 lt a lt 2 . Which of the following is true ?

Prove that the function f: R^(+) rarr [-5, oo) defined by f(x)= 9x^(2) + 6x-5 , is invertible