Home
Class 12
MATHS
Consider f: R^+vecRs u c ht h a tf(3)=1 ...

Consider `f: R^+vecRs u c ht h a tf(3)=1` for `a in R^+a n df(x)dotf(y)+f(3/x)f(3/y)=2f(x y)AAx ,y in R^+dot` Then find `f(x)dot`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the function \( f(x) \) given the functional equation: \[ f(x) \cdot f(y) + f\left(\frac{3}{x}\right) \cdot f\left(\frac{3}{y}\right) = 2 f(xy) \] with the condition that \( f(3) = 1 \). ### Step-by-Step Solution: 1. **Substituting Values**: Let's first substitute \( x = 1 \) and \( y = 1 \) into the functional equation. \[ f(1) \cdot f(1) + f(3) \cdot f(3) = 2 f(1 \cdot 1) \] This simplifies to: \[ f(1)^2 + 1^2 = 2 f(1) \] Thus, we have: \[ f(1)^2 + 1 = 2 f(1) \] 2. **Rearranging the Equation**: Rearranging gives us: \[ f(1)^2 - 2f(1) + 1 = 0 \] This can be factored as: \[ (f(1) - 1)^2 = 0 \] Therefore, we find: \[ f(1) = 1 \] 3. **Substituting Again**: Now, let’s substitute \( y = 1 \) and keep \( x \) as \( x \) in the original equation: \[ f(x) \cdot f(1) + f\left(\frac{3}{x}\right) \cdot f(3) = 2 f(x \cdot 1) \] Since \( f(1) = 1 \) and \( f(3) = 1 \), this simplifies to: \[ f(x) + f\left(\frac{3}{x}\right) = 2f(x) \] Rearranging gives: \[ f\left(\frac{3}{x}\right) = f(x) \] 4. **Using the New Relation**: Now, we can substitute \( y = \frac{3}{x} \) into the original equation: \[ f(x) \cdot f\left(\frac{3}{x}\right) + f(3) \cdot f(3) = 2 f\left(x \cdot \frac{3}{x}\right) \] This simplifies to: \[ f(x) \cdot f(x) + 1 = 2 f(3) \] Since \( f(3) = 1 \), we have: \[ f(x)^2 + 1 = 2 \] Thus: \[ f(x)^2 = 1 \] 5. **Finding the Function**: Taking the square root gives us: \[ f(x) = 1 \quad \text{or} \quad f(x) = -1 \] However, since \( f: \mathbb{R}^+ \to \mathbb{R} \) and must be positive, we conclude: \[ f(x) = 1 \] ### Final Answer: Thus, the function \( f(x) \) is: \[ \boxed{1} \]

To solve the problem, we need to find the function \( f(x) \) given the functional equation: \[ f(x) \cdot f(y) + f\left(\frac{3}{x}\right) \cdot f\left(\frac{3}{y}\right) = 2 f(xy) \] with the condition that \( f(3) = 1 \). ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.15|8 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|125 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.13|7 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Consider f: R^(+)->R such that f(3)=1 for a in R^+ a n d """"f(x)dotf(y)+ f(3/x)f(3/y)=2f(x y)AAx ,y in R^+dot Then find f(x)dot

If f(x+f(y))=f(x)+yAAx ,y in Ra n df(0)=1, then find the value of f(7)dot

If f(x+f(y))=f(x)+yAAx ,y in R a n df(0)=1, then find the value of f(7)dot

Let f(x+y)+f(x-y)=2f(x)f(y) AA x,y in R and f(0)=k , then

If f is polynomial function satisfying 2+f(x)f(y)=f(x)+f(y)+f(x y)AAx , y in R and if f(2)=5, then find the value of f(f(2))dot

If f is polynomial function satisfying 2+f(x)f(y)=f(x)+f(y)+f(x y)AAx , y in R and if f(2)=5, then find the value of f(f(2))dot

A continuous function f(x)onR->R satisfies the relation f(x)+f(2x+y)+5x y=f(3x-y)+2x^2+1forAAx ,y in R Then find f(x)dot

If f((x+2y)/3)=(f(x)+2f(y))/3AAx ,y in Ra n df^(prime)(0)=1,f(0)=2, then find f(x)dot

If f((x+2y)/3)=(f(x)+2f(y))/3AAx ,y in Ra n df^(prime)(0)=1,f(0)=2, then find f(x)dot

Determine all functions f: Rvecs u c ht h a tf(x-f(y))=f(f(y))+xf(y)+f(x)-1AAx , ygeq in Rdot