Home
Class 12
MATHS
The domain of the function f(x)=(1)/(sqr...

The domain of the function `f(x)=(1)/(sqrt(""^(10)C_(x-1)-3xx""^(10)C_(x)))` is

A

`{9,10,11}`

B

`{9,10,12}`

C

all natural numbers

D

`{9,10}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \frac{1}{\sqrt{{}^{10}C_{x-1} - 3 \cdot {}^{10}C_x}} \), we need to ensure that the expression inside the square root is positive, as the square root cannot be negative or zero (since it is in the denominator). ### Step 1: Set up the inequality We start by setting up the inequality: \[ {}^{10}C_{x-1} - 3 \cdot {}^{10}C_x > 0 \] ### Step 2: Use the formula for combinations Recall that the combination formula is given by: \[ {}^{n}C_{r} = \frac{n!}{r!(n-r)!} \] For our case: - \( {}^{10}C_{x-1} = \frac{10!}{(x-1)!(10-(x-1))!} = \frac{10!}{(x-1)!(11-x)!} \) - \( {}^{10}C_x = \frac{10!}{x!(10-x)!} \) ### Step 3: Substitute and simplify Substituting these into our inequality gives: \[ \frac{10!}{(x-1)!(11-x)!} - 3 \cdot \frac{10!}{x!(10-x)!} > 0 \] We can cancel \( 10! \) from both terms: \[ \frac{1}{(x-1)!(11-x)!} - 3 \cdot \frac{1}{x!(10-x)!} > 0 \] ### Step 4: Rewrite the inequality Rearranging gives: \[ \frac{(10-x)! - 3 \cdot (11-x)!}{(x-1)!(11-x)!} > 0 \] This simplifies to: \[ (10-x)! - 3 \cdot (11-x) \cdot (10-x)! > 0 \] Factoring out \( (10-x)! \): \[ (10-x)! \left(1 - 3(11-x)\right) > 0 \] ### Step 5: Solve the inequality The term \( (10-x)! \) is always positive for \( x \leq 10 \). Therefore, we focus on: \[ 1 - 3(11-x) > 0 \] This simplifies to: \[ 1 - 33 + 3x > 0 \quad \Rightarrow \quad 3x > 32 \quad \Rightarrow \quad x > \frac{32}{3} \approx 10.67 \] ### Step 6: Determine integer values Since \( x \) must be a natural number, the smallest integer satisfying \( x > 10.67 \) is \( x = 11 \). ### Step 7: Check the boundaries Next, we need to check the boundaries given by the combination constraints: - \( x-1 \geq 0 \) implies \( x \geq 1 \) - \( 10 - x \geq 0 \) implies \( x \leq 10 \) ### Conclusion The valid integer solutions that satisfy all conditions are \( x = 9 \) and \( x = 10 \). Thus, the domain of the function \( f(x) \) is: \[ \{9, 10\} \]

To find the domain of the function \( f(x) = \frac{1}{\sqrt{{}^{10}C_{x-1} - 3 \cdot {}^{10}C_x}} \), we need to ensure that the expression inside the square root is positive, as the square root cannot be negative or zero (since it is in the denominator). ### Step 1: Set up the inequality We start by setting up the inequality: \[ {}^{10}C_{x-1} - 3 \cdot {}^{10}C_x > 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.15|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=(1)/(sqrt(|x|-x) is

The domain of the function f(x)=1/sqrt((10C_(x-1)-3.^10C_x)) contains the points :

The domain of the function f(x)=sqrt(sin x-1) is

Find the domain of the function f(x)=sin^(-1)sqrt(x-1)

Find the domain of the function f(x)=sin^(-1)sqrt(x-1)

The domain of the function f(x)=1/(sqrt(4x-|x^2-10 x+9|)) is

Domain of the function f(x)=sqrt(2-sec^(-1)x) is

The domain of the function f(x)=sqrt(x-sqrt(1-x^2)) is

The domain of the function f(x)=sqrt(cos^(- 1)((1-|x|)/2)) is

The domain of the function f(x)=(log)_(3+x)(x^2-1) is

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Single Correct Answer Type
  1. Given the function f(x)=(a^x+a^(-x))/2(w h e r ea >2)dotT h e nf(x+y)+...

    Text Solution

    |

  2. If f(x) = cos(log x) then f(x)f(y)-1/2[f(x/y)+f(xy)] has the value

    Text Solution

    |

  3. The domain of the function f(x)=(1)/(sqrt(""^(10)C(x-1)-3xx""^(10)C(x)...

    Text Solution

    |

  4. The domain of the function f(x)=(sin^(-1)(3-x))/("In"(|x|-2)) is

    Text Solution

    |

  5. The domain of f9x)=((log)2(x+3))/(x^2+3x+2) is R-{-1,2} (b) (-2,oo) ...

    Text Solution

    |

  6. The domain of the function f(x)=sqrt(x^2-[x]^2) , where [x] is the gre...

    Text Solution

    |

  7. The domain of the function f(x)=(log)(3+x)(x^2-1) is (-3,-1)uu(1,oo) ...

    Text Solution

    |

  8. Domain of the function, f(x)=[log10 ((5x-x^2)/4)]^(1/2) is

    Text Solution

    |

  9. The domain of f(x)=log|logx| is

    Text Solution

    |

  10. If x^3f(x)=sqrt(1+cos2x)+|f(x)|, (-3pi)/4ltxlt(-pi) /2 and f(x)=(alpha...

    Text Solution

    |

  11. The function f(x)=(sec^(-1)x)/(sqrt(x-[x]), where [x] denotes the grea...

    Text Solution

    |

  12. The domain of definition of the function f(x) given by the equation 2^...

    Text Solution

    |

  13. The domain of f(x)=cos^(-1)((2-|x|)/4)+[l log(3-x)]^1 is [-2,6] (b...

    Text Solution

    |

  14. The domain of the function f(x)=sqrt(log((1)/(|sinx|)))

    Text Solution

    |

  15. Domain of definition of the function f(x) = log2 (-log(1/2) (1+x^(-4))...

    Text Solution

    |

  16. The number of real solutions of the (log)(0. 5)|x|=2|x| is (a) 1 (b) ...

    Text Solution

    |

  17. Let f: Rvec[0,pi/2) be defined by f(x)=tan^(-1)(x^2+x+a)dot Then the s...

    Text Solution

    |

  18. The domain of the function f(x)=sqrt(1n((|x|-1))(x^2+4x+4)) is (-3,-1...

    Text Solution

    |

  19. The domain of f(x)=1n(a x^3+(a+b)x^2+(b+c)x+c), where a >0,b^2-4a c=0,...

    Text Solution

    |

  20. The domain of the function f(x)=1/(sqrt(4x-|x^2-10 x+9|)) is (a)(7...

    Text Solution

    |