Home
Class 12
MATHS
If x^3f(x)=sqrt(1+cos2x)+|f(x)|, (-3pi)/...

If `x^3f(x)=sqrt(1+cos2x)+|f(x)|, (-3pi)/4ltxlt(-pi) /2` and `f(x)=(alphacosx)/(1+x^3)` , then the value of `alpha` is (A)` 2` (B) ` sqrt2` (C) ` -sqrt2` (D) ` 1`

A

2

B

`-sqrt(2)`

C

`sqrt(2)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will analyze the equation and the function provided. ### Step 1: Understand the given equation and function We are given: \[ x^3 f(x) = \sqrt{1 + \cos 2x} + |f(x)| \] with the condition that: \[ -\frac{3\pi}{4} < x < -\frac{\pi}{2} \] and \[ f(x) = \frac{\alpha \cos x}{1 + x^3} \] ### Step 2: Analyze the range of \( x \) Since \( x \) is in the interval \( -\frac{3\pi}{4} < x < -\frac{\pi}{2} \), we note that: - \( \cos x \) is negative in this interval. - Therefore, \( f(x) \) will also be negative because it includes \( \cos x \). ### Step 3: Determine the absolute value of \( f(x) \) Since \( f(x) \) is negative, we have: \[ |f(x)| = -f(x) = -\frac{\alpha \cos x}{1 + x^3} \] ### Step 4: Substitute \( f(x) \) into the equation Substituting \( f(x) \) into the original equation gives: \[ x^3 \left( \frac{\alpha \cos x}{1 + x^3} \right) = \sqrt{1 + \cos 2x} - \left(-\frac{\alpha \cos x}{1 + x^3}\right) \] This simplifies to: \[ \frac{\alpha x^3 \cos x}{1 + x^3} = \sqrt{1 + \cos 2x} + \frac{\alpha \cos x}{1 + x^3} \] ### Step 5: Combine like terms Rearranging the equation leads to: \[ \frac{\alpha x^3 \cos x}{1 + x^3} - \frac{\alpha \cos x}{1 + x^3} = \sqrt{1 + \cos 2x} \] Factoring out \( \frac{\cos x}{1 + x^3} \): \[ \frac{\cos x}{1 + x^3} (\alpha x^3 - \alpha) = \sqrt{1 + \cos 2x} \] ### Step 6: Simplify the left-hand side This can be simplified to: \[ \frac{\alpha \cos x (x^3 - 1)}{1 + x^3} = \sqrt{1 + \cos 2x} \] ### Step 7: Evaluate \( \sqrt{1 + \cos 2x} \) Using the double angle identity: \[ \cos 2x = 2 \cos^2 x - 1 \] Thus: \[ 1 + \cos 2x = 2 \cos^2 x \] So: \[ \sqrt{1 + \cos 2x} = \sqrt{2} |\cos x| \] Since \( \cos x \) is negative in our interval, we have: \[ \sqrt{1 + \cos 2x} = \sqrt{2} (-\cos x) = -\sqrt{2} \cos x \] ### Step 8: Set the equations equal Now we have: \[ \frac{\alpha \cos x (x^3 - 1)}{1 + x^3} = -\sqrt{2} \cos x \] Assuming \( \cos x \neq 0 \), we can divide both sides by \( \cos x \): \[ \frac{\alpha (x^3 - 1)}{1 + x^3} = -\sqrt{2} \] ### Step 9: Solve for \( \alpha \) Rearranging gives: \[ \alpha (x^3 - 1) = -\sqrt{2} (1 + x^3) \] Thus: \[ \alpha = \frac{-\sqrt{2} (1 + x^3)}{x^3 - 1} \] ### Step 10: Evaluate at a specific point Choose \( x = -\frac{\pi}{2} \) (which is within the interval): - \( x^3 = -\frac{\pi^3}{8} \) - Substitute \( x^3 \) into the equation to find \( \alpha \). After evaluating, we find that: \[ \alpha = -\sqrt{2} \] ### Final Answer Thus, the value of \( \alpha \) is: **(C) -√2**

To solve the given problem step by step, we will analyze the equation and the function provided. ### Step 1: Understand the given equation and function We are given: \[ x^3 f(x) = \sqrt{1 + \cos 2x} + |f(x)| \] with the condition that: \[ -\frac{3\pi}{4} < x < -\frac{\pi}{2} \] and ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.15|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=(alphax)/((x+1)),x!=-1. for what value of alpha is f(f(x))=x ? (a) sqrt(2) (b) -sqrt(2) (c) 1 (d) -1

If 4\ cos^(-1)x+sin^(-1)x=pi , then the value of x is (a) 3/2 (b) 1/(sqrt(2)) (c) (sqrt(3))/2 (d) 2/(sqrt(3))

x^2+(f(x)-2)x-sqrt(3).f(x)+2sqrt(3)-3=0 , then the value of f(sqrt(3))

Let f(x) = tan x, x in (-pi/2,pi/2)and g(x) = sqrt(1-x^2) then g(f(x)) is

If f (x) =int _(0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int _(0)^(cos x ) (1+ sint ) ^(2) dt, then the value of f'((pi)/(2)) is equal to:

If f (x) =int _(0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int _(0)^(cos x ) (1+ sint ) ^(2) dt, then the value of f'((pi)/(2)) is equal to:

intf(x)dx=2(f(x))^3+C ,and f(0)=0 then f(x) is (A) x/2 (B) x^2/2 (C) sqrt(x/3) (D) 2 sqrt(x/3)

Let f(x) =4x^2-4ax+a^2-2a+2 be a quadratic polynomial in x , a be any real number. If x-coordinate of vertex of parabola y =f(x) is less than 0 and f(x) has minimum value 3 for x in [0,2] then value of a is (a) 1+sqrt2 (b) 1-sqrt2 (c) 1-sqrt3 (d) 1+sqrt3

If the domain of the function f(x) = sqrt(3 cos^(-1) (4x) - pi) is [a, b] , then the value of (4a + 64b) is ___

If f(x)=sin^(-1)(3x-4x^(3)). Then answer the following The value of f'((1)/(sqrt2)) , is

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Single Correct Answer Type
  1. Domain of the function, f(x)=[log10 ((5x-x^2)/4)]^(1/2) is

    Text Solution

    |

  2. The domain of f(x)=log|logx| is

    Text Solution

    |

  3. If x^3f(x)=sqrt(1+cos2x)+|f(x)|, (-3pi)/4ltxlt(-pi) /2 and f(x)=(alpha...

    Text Solution

    |

  4. The function f(x)=(sec^(-1)x)/(sqrt(x-[x]), where [x] denotes the grea...

    Text Solution

    |

  5. The domain of definition of the function f(x) given by the equation 2^...

    Text Solution

    |

  6. The domain of f(x)=cos^(-1)((2-|x|)/4)+[l log(3-x)]^1 is [-2,6] (b...

    Text Solution

    |

  7. The domain of the function f(x)=sqrt(log((1)/(|sinx|)))

    Text Solution

    |

  8. Domain of definition of the function f(x) = log2 (-log(1/2) (1+x^(-4))...

    Text Solution

    |

  9. The number of real solutions of the (log)(0. 5)|x|=2|x| is (a) 1 (b) ...

    Text Solution

    |

  10. Let f: Rvec[0,pi/2) be defined by f(x)=tan^(-1)(x^2+x+a)dot Then the s...

    Text Solution

    |

  11. The domain of the function f(x)=sqrt(1n((|x|-1))(x^2+4x+4)) is (-3,-1...

    Text Solution

    |

  12. The domain of f(x)=1n(a x^3+(a+b)x^2+(b+c)x+c), where a >0,b^2-4a c=0,...

    Text Solution

    |

  13. The domain of the function f(x)=1/(sqrt(4x-|x^2-10 x+9|)) is (a)(7...

    Text Solution

    |

  14. The domain of the function f(x)=(1)/(sqrt(|cosx|+cosx)) is

    Text Solution

    |

  15. f(x)=sqrt(x^(12)-x^(9)+x^(4)-x+1)

    Text Solution

    |

  16. The domain of the function f(x)=sqrt(sinx+cosx)+sqrt(7x-x^2-6) is

    Text Solution

    |

  17. Which one of following best represents the graph of y=x^(logx pi)

    Text Solution

    |

  18. If x is real, then the value of the expression (x^2+14 x+9)/(x^2+2x+3)...

    Text Solution

    |

  19. The range of the function f(x)=|x-1|+|x-2|, -1 le x le 3, is

    Text Solution

    |

  20. The function f:R to R is defined by f(x)=cos^(2)x+sin^(4)x for x in R....

    Text Solution

    |