Home
Class 12
MATHS
The domain of the function f(x)=(1)/(sqr...

The domain of the function `f(x)=(1)/(sqrt(|cosx|+cosx))` is

A

`[-2n pi, 2 n pi], n in Z`

B

`(2n pi,bar(2n+1) pi), n in Z`

C

`(((4n+1)pi)/(2),((4n+3)pi)/(2)), n in Z`

D

`(((4n-1)pi)/(2),((4n+1)pi)/(2)), n in Z`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \frac{1}{\sqrt{|\cos x| + \cos x}} \), we need to determine the values of \( x \) for which the expression under the square root is positive, as the square root function is only defined for non-negative values. ### Step-by-Step Solution: 1. **Identify the Expression Under the Square Root**: We start with the expression \( |\cos x| + \cos x \). 2. **Analyze the Cases for \( \cos x \)**: - **Case 1**: When \( \cos x \geq 0 \): - Here, \( |\cos x| = \cos x \). - Thus, \( |\cos x| + \cos x = \cos x + \cos x = 2\cos x \). - **Case 2**: When \( \cos x < 0 \): - Here, \( |\cos x| = -\cos x \). - Thus, \( |\cos x| + \cos x = -\cos x + \cos x = 0 \). 3. **Determine When the Expression is Positive**: - From **Case 1**, we need \( 2\cos x > 0 \), which simplifies to \( \cos x > 0 \). - From **Case 2**, the expression equals zero, which does not contribute to the domain since we cannot take the square root of zero in the denominator. 4. **Find the Intervals Where \( \cos x > 0 \)**: - The cosine function is positive in the first and fourth quadrants. - This occurs in the intervals: - \( 0 < x < \frac{\pi}{2} \) (first quadrant) - \( \frac{3\pi}{2} < x < 2\pi \) (fourth quadrant) 5. **Generalize the Intervals**: - The cosine function is periodic with a period of \( 2\pi \). - Therefore, we can express the intervals where \( \cos x > 0 \) as: - \( x \in (2n\pi, 2n\pi + \frac{\pi}{2}) \) and \( x \in (2n\pi + \frac{3\pi}{2}, 2(n+1)\pi) \) for any integer \( n \). 6. **Final Domain Representation**: - The domain of the function \( f(x) \) is: \[ x \in \bigcup_{n \in \mathbb{Z}} \left(2n\pi, 2n\pi + \frac{\pi}{2}\right) \cup \left(2n\pi + \frac{3\pi}{2}, 2(n+1)\pi\right) \]

To find the domain of the function \( f(x) = \frac{1}{\sqrt{|\cos x| + \cos x}} \), we need to determine the values of \( x \) for which the expression under the square root is positive, as the square root function is only defined for non-negative values. ### Step-by-Step Solution: 1. **Identify the Expression Under the Square Root**: We start with the expression \( |\cos x| + \cos x \). 2. **Analyze the Cases for \( \cos x \)**: ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.15|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=(1)/(sqrt(|x|-x) is

The domain of the function f(x) = (1)/(sqrt(4 + 3 sin x)) is :

The domain of the function f(x)=sqrt(sin x-1) is

The domain of definition of the function f(x)=(1)/(sqrt(|x|+x)) is

Write the domain of the real function f(x)=1/(sqrt(|x|-x))

The domain of the function f defined by f(x)=(1)/(sqrt(|x|-x)) is

The domain of the function f(x)=sqrt(cos^(- 1)((1-|x|)/2)) is

The domain of the function f(x)=sqrt(x-sqrt(1-x^2)) is

Find the domain of the function f(x)=sin^(-1)sqrt(x-1)

Find the domain of the function f(x)=sin^(-1)sqrt(x-1)

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Single Correct Answer Type
  1. The domain of f(x)=1n(a x^3+(a+b)x^2+(b+c)x+c), where a >0,b^2-4a c=0,...

    Text Solution

    |

  2. The domain of the function f(x)=1/(sqrt(4x-|x^2-10 x+9|)) is (a)(7...

    Text Solution

    |

  3. The domain of the function f(x)=(1)/(sqrt(|cosx|+cosx)) is

    Text Solution

    |

  4. f(x)=sqrt(x^(12)-x^(9)+x^(4)-x+1)

    Text Solution

    |

  5. The domain of the function f(x)=sqrt(sinx+cosx)+sqrt(7x-x^2-6) is

    Text Solution

    |

  6. Which one of following best represents the graph of y=x^(logx pi)

    Text Solution

    |

  7. If x is real, then the value of the expression (x^2+14 x+9)/(x^2+2x+3)...

    Text Solution

    |

  8. The range of the function f(x)=|x-1|+|x-2|, -1 le x le 3, is

    Text Solution

    |

  9. The function f:R to R is defined by f(x)=cos^(2)x+sin^(4)x for x in R....

    Text Solution

    |

  10. The range of f9x)=[|s in x|+|cosx"|""]"dot Where [.] denotes the great...

    Text Solution

    |

  11. The range of function f(x)=^(7-x)P(x-3)i s (a) {1,2,3} (b) {1,2...

    Text Solution

    |

  12. The range of f(x)=sin^(-1)((x^2+1)/(x^2+2)) is (a)[0,pi/2] (b) (0,pi/...

    Text Solution

    |

  13. The range of the function f(x)=(e^x-e^(|x|))/(e^x+e^(|x|)) is

    Text Solution

    |

  14. Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] deno...

    Text Solution

    |

  15. The range of the function f defined by f(x)=[1/(sin{x})] (where [.] an...

    Text Solution

    |

  16. Range of function f(x) = cos (k sin x) is [-1, 1], then the least posi...

    Text Solution

    |

  17. Let f(x)=sqrt(|x|-|x+)(w h e r e{dot} denotes the fractional part of (...

    Text Solution

    |

  18. The range of f(x)=cos^(-1)((1+x^2)/(2x))+sqrt(2-x^2) is (a){0,1+pi/2} ...

    Text Solution

    |

  19. The range of the following function is f(x)=sqrt((1-cosx)sqrt((1-cosx)...

    Text Solution

    |

  20. The range of f(x)=(x+1)(x+2)(x+3)(x+4)+5 for x in [-6,6] is [4, 5045] ...

    Text Solution

    |