Home
Class 12
MATHS
The range of f(x)=sin^(-1)((x^2+1)/(x^2+...

The range of `f(x)=sin^(-1)((x^2+1)/(x^2+2))` is `(a)[0,pi/2]` (b) `(0,pi/6)` (c) `[pi/6,pi/2]` (d) none of these

A

`[0,pi//2]`

B

`(0,pi//6)`

C

`[pi//6,pi//2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \sin^{-1}\left(\frac{x^2 + 1}{x^2 + 2}\right) \), we will follow these steps: ### Step 1: Analyze the function The function can be rewritten as: \[ f(x) = \sin^{-1}\left(1 - \frac{1}{x^2 + 2}\right) \] This transformation helps us understand how the term \( \frac{x^2 + 1}{x^2 + 2} \) behaves. ### Step 2: Determine the range of \( \frac{x^2 + 1}{x^2 + 2} \) We know that \( x^2 \) is always non-negative for real \( x \). Therefore, \( x^2 + 2 \) is always greater than or equal to 2. Now, let's find the minimum and maximum values of \( \frac{x^2 + 1}{x^2 + 2} \): - As \( x^2 \to 0 \), \( \frac{x^2 + 1}{x^2 + 2} \to \frac{1}{2} \). - As \( x^2 \to \infty \), \( \frac{x^2 + 1}{x^2 + 2} \to 1 \). Thus, the range of \( \frac{x^2 + 1}{x^2 + 2} \) is \( \left[\frac{1}{2}, 1\right) \). ### Step 3: Apply the arcsine function Now we apply the arcsine function to the range we just found: \[ \text{Range of } f(x) = \sin^{-1}\left(\left[\frac{1}{2}, 1\right)\right] \] Calculating the arcsine: - \( \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6} \) - \( \sin^{-1}(1) = \frac{\pi}{2} \) Thus, the range of \( f(x) \) is: \[ \left[\frac{\pi}{6}, \frac{\pi}{2}\right) \] ### Step 4: Conclusion The range of the function \( f(x) \) is \( \left[\frac{\pi}{6}, \frac{\pi}{2}\right) \). ### Step 5: Check options From the given options: - (a) \([0, \frac{\pi}{2}]\) - (b) \((0, \frac{\pi}{6})\) - (c) \([\frac{\pi}{6}, \frac{\pi}{2}]\) - (d) none of these The correct answer is option (c) \([\frac{\pi}{6}, \frac{\pi}{2}]\).

To find the range of the function \( f(x) = \sin^{-1}\left(\frac{x^2 + 1}{x^2 + 2}\right) \), we will follow these steps: ### Step 1: Analyze the function The function can be rewritten as: \[ f(x) = \sin^{-1}\left(1 - \frac{1}{x^2 + 2}\right) \] This transformation helps us understand how the term \( \frac{x^2 + 1}{x^2 + 2} \) behaves. ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.15|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

The range of f(x)=sin^(-1)(sqrt(x^2+x+1)) i s (a) (0,pi/2) (b) (0,pi/3) (c) [pi/3,pi/2] (d) [pi/6,pi/3]

The range of f(x)=cos^(-1)((1+x^2)/(2x))+sqrt(2-x^2) is (a) {0,1+pi/2} (b) {0,1+pi) {1,1+pi/2} (d) {1,1+pi}

Range of tan^(-1)((2x)/(1+x^2)) is (a) [-pi/4,pi/4] (b) (-pi/2,pi/2) (c) (-pi/2,pi/4) (d) [pi/4,pi/2]

The range of f(x)=cos^(-1)((1+x^2)/(2x))+sqrt(2-x^2) is {0,1+pi/2} (b) {0,1+pi) {1,1+pi/2} (d) {1,1+pi}

The range of the function tan^(-1)((x^2+1)/(x^2+sqrt(3))),x in R is a. [pi/6,pi/2) b. [pi/6,pi/3) c. [pi/6,pi/4] d. none of these

Range of function f(x)=cot^(-1)(2x-x^2), is (a) [pi/4,(3pi)/2] (b) [0,pi/4] [0,pi/2] (d) [pi/4,pi]

Range of function f(x)=|6sin^(-1)x-pi|+|6cos^(-1)x-pi| is (a) [0,9pi] (b) [0,3pi] (c) [pi,3pi] (d) [ pi,9pi]

Find the range of f(x) = (sin^(-1) x)^(2) + 2pi cos^(-1) x + pi^(2)

If f(x)=cos^(-1)((2x^2+1)/(x^2+1)), then rang of f(x) is [0,pi] (2) (0,pi/4] (0,pi/3] (4) [0,pi/2)

If f(x)=sin^(-1)cosx , then the value of f(10)+f^(prime)(10) is (a) 11-(pi)/2 (b) (pi)/2-11 (c) (5pi)/2-11 (d) none of these

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Single Correct Answer Type
  1. The range of f9x)=[|s in x|+|cosx"|""]"dot Where [.] denotes the great...

    Text Solution

    |

  2. The range of function f(x)=^(7-x)P(x-3)i s (a) {1,2,3} (b) {1,2...

    Text Solution

    |

  3. The range of f(x)=sin^(-1)((x^2+1)/(x^2+2)) is (a)[0,pi/2] (b) (0,pi/...

    Text Solution

    |

  4. The range of the function f(x)=(e^x-e^(|x|))/(e^x+e^(|x|)) is

    Text Solution

    |

  5. Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] deno...

    Text Solution

    |

  6. The range of the function f defined by f(x)=[1/(sin{x})] (where [.] an...

    Text Solution

    |

  7. Range of function f(x) = cos (k sin x) is [-1, 1], then the least posi...

    Text Solution

    |

  8. Let f(x)=sqrt(|x|-|x+)(w h e r e{dot} denotes the fractional part of (...

    Text Solution

    |

  9. The range of f(x)=cos^(-1)((1+x^2)/(2x))+sqrt(2-x^2) is (a){0,1+pi/2} ...

    Text Solution

    |

  10. The range of the following function is f(x)=sqrt((1-cosx)sqrt((1-cosx)...

    Text Solution

    |

  11. The range of f(x)=(x+1)(x+2)(x+3)(x+4)+5 for x in [-6,6] is [4, 5045] ...

    Text Solution

    |

  12. The range of f(x)=sec^(-1)((log)3tanx+(log)(tanx)3) is (a) [pi/3,pi/2...

    Text Solution

    |

  13. The domain of definition of the function f(x)={x}^({x})+[x]^([x]) is w...

    Text Solution

    |

  14. 49. If [x^2-2x + a] = 0 has no solution then

    Text Solution

    |

  15. If [x] and {x} represent the integral and fractional parts of x respe...

    Text Solution

    |

  16. If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest inte...

    Text Solution

    |

  17. Let f(x)=([a]^2-5[a]+4)x^3-(6{a}^2-5{a}+1)x-(tanx)xsgnx be an even fun...

    Text Solution

    |

  18. The solution set for [x]{x}=1 (where {x} and [x] are respectively, fra...

    Text Solution

    |

  19. Let [x] represent the greatest integer less than or equal to x If [sqr...

    Text Solution

    |

  20. The number of roots of x^2-2=[sinx],w h e r e[dot] stands for the grea...

    Text Solution

    |