Home
Class 12
MATHS
The range of f(x)=(x+1)(x+2)(x+3)(x+4)+5...

The range of `f(x)=(x+1)(x+2)(x+3)(x+4)+5` for `x in [-6,6]` is [4, 5045] (b) [0, 5045] `[-20 , 5045]` (d) none of these

A

[4, 5045]

B

[0, 5045]

C

[-20, 5045]

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = (x+1)(x+2)(x+3)(x+4) + 5 \) for \( x \) in the interval \([-6, 6]\), we can follow these steps: ### Step 1: Simplify the Function First, we can simplify the expression \( (x+1)(x+2)(x+3)(x+4) \). Let: \[ g(x) = (x+1)(x+2)(x+3)(x+4) \] ### Step 2: Expand \( g(x) \) We can expand \( g(x) \): \[ g(x) = [(x+1)(x+4)] \cdot [(x+2)(x+3)] \] Calculating each part: \[ (x+1)(x+4) = x^2 + 5x + 4 \] \[ (x+2)(x+3) = x^2 + 5x + 6 \] Now, multiply these two results: \[ g(x) = (x^2 + 5x + 4)(x^2 + 5x + 6) \] ### Step 3: Substitute \( t = x^2 + 5x \) Let \( t = x^2 + 5x \). Then we can rewrite \( g(x) \) as: \[ g(x) = (t + 4)(t + 6) = t^2 + 10t + 24 \] ### Step 4: Find the Minimum Value of \( g(x) \) To find the minimum value of \( g(x) \), we first need to find the minimum value of \( t \) in the interval \([-6, 6]\). Calculate \( t \) at the endpoints: - For \( x = -6 \): \[ t = (-6)^2 + 5(-6) = 36 - 30 = 6 \] - For \( x = 6 \): \[ t = (6)^2 + 5(6) = 36 + 30 = 66 \] Now, we also need to check the vertex of the quadratic \( x^2 + 5x \): The vertex occurs at \( x = -\frac{b}{2a} = -\frac{5}{2} = -2.5 \): \[ t = (-2.5)^2 + 5(-2.5) = 6.25 - 12.5 = -6.25 \] ### Step 5: Determine the Range of \( g(x) \) The minimum value of \( t \) in the interval \([-6, 6]\) is \(-6.25\) and the maximum is \(66\). Now substitute these values back into \( g(x) \): - Minimum \( g(-6.25) = (-6.25 + 4)(-6.25 + 6) = (-2.25)(-0.25) = 0.5625 \) - Maximum \( g(66) = (66 + 4)(66 + 6) = 70 \cdot 72 = 5040 \) ### Step 6: Add 5 to Find \( f(x) \) Now, we calculate \( f(x) \): \[ f(x) = g(x) + 5 \] - Minimum value of \( f(x) = 0.5625 + 5 = 5.5625 \) - Maximum value of \( f(x) = 5040 + 5 = 5045 \) ### Conclusion Thus, the range of \( f(x) \) for \( x \in [-6, 6] \) is: \[ [5.5625, 5045] \] ### Final Answer The correct option is (d) none of these.

To find the range of the function \( f(x) = (x+1)(x+2)(x+3)(x+4) + 5 \) for \( x \) in the interval \([-6, 6]\), we can follow these steps: ### Step 1: Simplify the Function First, we can simplify the expression \( (x+1)(x+2)(x+3)(x+4) \). Let: \[ g(x) = (x+1)(x+2)(x+3)(x+4) ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.15|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Find the range of f(x) =x^(2) -5x + 6

Range of f(x) = ln(3x^2-4x+5) is

The range of f(x)=(x+1)(x+2)(x+3)(x+4)+5 for x in [-6,6] If the range of the function is [a,b] where a,b,∈N then find the value of (a+b).

Find the range of (a) f(x) = x^(2) + 2x + 4 (b) f(x) = 1+x -x^(2)

If f(x)=sin^6x+cos^6x , then range of f(x) is [1/4,1] (b) [1/4,3/4] (c) [3/4,1] (d) none of these

If f(x)=sin^6x+cos^6x , then range of f(x) is [1/4,1] (b) [1/4,3/4] (c) [3/4,1] (d) none of these

Range of f(x) =sin^20x+cos^48x is (A) [0,1] (B) (0,1] (C) (0,oo) (D) none of these

The minimum value of f(x)=x^4-x^2-2x+6 is (a) 6 (b) 4 (c) 8 (d) none of these

The range of the function f(x)=\ ^(7-x)P_(x-3) is (a) {1, 2, 3, 4, 5} (b) {1, 2, 3, 4, 5, 6} (c) {1, 2, 3, 4} (d) {1, 2, 3}

If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal to (a)0 (b) 1/(14) (c) -1/4 (d) None of these

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Single Correct Answer Type
  1. The range of f(x)=cos^(-1)((1+x^2)/(2x))+sqrt(2-x^2) is (a){0,1+pi/2} ...

    Text Solution

    |

  2. The range of the following function is f(x)=sqrt((1-cosx)sqrt((1-cosx)...

    Text Solution

    |

  3. The range of f(x)=(x+1)(x+2)(x+3)(x+4)+5 for x in [-6,6] is [4, 5045] ...

    Text Solution

    |

  4. The range of f(x)=sec^(-1)((log)3tanx+(log)(tanx)3) is (a) [pi/3,pi/2...

    Text Solution

    |

  5. The domain of definition of the function f(x)={x}^({x})+[x]^([x]) is w...

    Text Solution

    |

  6. 49. If [x^2-2x + a] = 0 has no solution then

    Text Solution

    |

  7. If [x] and {x} represent the integral and fractional parts of x respe...

    Text Solution

    |

  8. If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest inte...

    Text Solution

    |

  9. Let f(x)=([a]^2-5[a]+4)x^3-(6{a}^2-5{a}+1)x-(tanx)xsgnx be an even fun...

    Text Solution

    |

  10. The solution set for [x]{x}=1 (where {x} and [x] are respectively, fra...

    Text Solution

    |

  11. Let [x] represent the greatest integer less than or equal to x If [sqr...

    Text Solution

    |

  12. The number of roots of x^2-2=[sinx],w h e r e[dot] stands for the grea...

    Text Solution

    |

  13. The domain of f(x)=sin^(-1)[2x^2-3],w h e r e[dot] denotes the greates...

    Text Solution

    |

  14. The domain of f(x)=sqrt(2{x}^2-3{x}+1), where {.} denotes the fraction...

    Text Solution

    |

  15. The range of sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , where [.] denotes t...

    Text Solution

    |

  16. Let f(x)=e^({e^(|x|sgnx)})a n dg(x)=e^([e^(|x|sgnx)]),x in R , where ...

    Text Solution

    |

  17. Number of solutions of the equation, [y+[y]]=2cosx is: (where y=1//3)[...

    Text Solution

    |

  18. The function f(x)=sin(log(x+sqrt(1+x^2))) is (a) even function (b) odd...

    Text Solution

    |

  19. If f(x)=x^m n ,n in N , is an even function, then m is even integer ...

    Text Solution

    |

  20. If f(x)={x^2 sin((pi x)/2), |x|<1; x|x|, |x|>=1 then f(x) is

    Text Solution

    |