Home
Class 12
MATHS
Let f(x)=([a]^2-5[a]+4)x^3-(6{a}^2-5{a}+...

Let `f(x)=([a]^2-5[a]+4)x^3-(6{a}^2-5{a}+1)x-(tanx)xsgnx` be an even function for all `x in Rdot` Then the sum of all possible values of `a` is (where `[dot]a n d{dot}` denote greatest integer function and fractional part function, respectively). `(17)/6` (b) `(53)/6` (c) `(31)/3` (d) `(35)/3`

A

`(17)/(6)`

B

`(53)/(6)`

C

`(31)/(3)`

D

`(35)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the sum of all possible values of \( a \) such that the function \[ f(x) = (a^2 - 5a + 4)x^3 - (6a^2 - 5a + 1)x - (\tan x)x \sgn x \] is an even function for all \( x \in \mathbb{R} \), we need to analyze the conditions for \( f(x) \) to be even. ### Step 1: Identify the conditions for \( f(x) \) to be even A function \( f(x) \) is even if \( f(-x) = f(x) \) for all \( x \). Therefore, we need to compute \( f(-x) \): \[ f(-x) = (a^2 - 5a + 4)(-x)^3 - (6a^2 - 5a + 1)(-x) - (\tan(-x))(-x) \sgn(-x) \] Using the properties of odd functions, we know \( \tan(-x) = -\tan(x) \) and \( \sgn(-x) = -\sgn(x) \). Thus, we have: \[ f(-x) = -(a^2 - 5a + 4)x^3 + (6a^2 - 5a + 1)x + (\tan x)x \sgn x \] ### Step 2: Set \( f(-x) = f(x) \) Equating \( f(-x) \) and \( f(x) \): \[ -(a^2 - 5a + 4)x^3 + (6a^2 - 5a + 1)x + (\tan x)x \sgn x = (a^2 - 5a + 4)x^3 - (6a^2 - 5a + 1)x - (\tan x)x \sgn x \] ### Step 3: Simplify the equation This gives us two separate equations by equating coefficients: 1. Coefficient of \( x^3 \): \[ -(a^2 - 5a + 4) = a^2 - 5a + 4 \] This simplifies to: \[ 2(a^2 - 5a + 4) = 0 \] Thus, we have: \[ a^2 - 5a + 4 = 0 \] 2. Coefficient of \( x \): \[ (6a^2 - 5a + 1) = -(6a^2 - 5a + 1) \] This simplifies to: \[ 2(6a^2 - 5a + 1) = 0 \] Thus, we have: \[ 6a^2 - 5a + 1 = 0 \] ### Step 4: Solve the quadratic equations **For the first equation**: \[ a^2 - 5a + 4 = 0 \] Using the quadratic formula: \[ a = \frac{5 \pm \sqrt{(5)^2 - 4 \cdot 1 \cdot 4}}{2 \cdot 1} = \frac{5 \pm \sqrt{25 - 16}}{2} = \frac{5 \pm 3}{2} \] This gives: \[ a = 4 \quad \text{or} \quad a = 1 \] **For the second equation**: \[ 6a^2 - 5a + 1 = 0 \] Using the quadratic formula: \[ a = \frac{5 \pm \sqrt{(-5)^2 - 4 \cdot 6 \cdot 1}}{2 \cdot 6} = \frac{5 \pm \sqrt{25 - 24}}{12} = \frac{5 \pm 1}{12} \] This gives: \[ a = \frac{6}{12} = \frac{1}{2} \quad \text{or} \quad a = \frac{4}{12} = \frac{1}{3} \] ### Step 5: Sum all possible values of \( a \) The possible values of \( a \) are \( 4, 1, \frac{1}{2}, \frac{1}{3} \). Now, we sum these values: \[ 4 + 1 + \frac{1}{2} + \frac{1}{3} = 5 + \frac{3}{6} + \frac{2}{6} = 5 + \frac{5}{6} = \frac{30}{6} + \frac{5}{6} = \frac{35}{6} \] ### Final Answer The sum of all possible values of \( a \) is \( \frac{35}{6} \).

To determine the sum of all possible values of \( a \) such that the function \[ f(x) = (a^2 - 5a + 4)x^3 - (6a^2 - 5a + 1)x - (\tan x)x \sgn x \] is an even function for all \( x \in \mathbb{R} \), we need to analyze the conditions for \( f(x) \) to be even. ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.15|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=([a]^2-5[a]+4)x^3-(6{a}^2-5{a}+1)x-(tan)x sin x be an even function for all x in R Then the sum of all possible values of a (where [.] and {.} denot greatest integer function and fractional part function,respectively). (a) 17/6 (b) 53/6 (c) 31/6 (d) 35/3

Let f(x)=([a]^2-5[a]+4)x^3-(6{a}^2-5{a}+1)x-(tan)x sin x be an even function for all x in R Then the sum of all possible values of a (where [.] and {.} denot greatest integer function and fractional part function,respectively). (a) 17/6 (b) 53/6 (c) 31/6 (d) 35/3

Solve 2[x]=x+{x},where [.] and {} denote the greatest integer function and the fractional part function, respectively.

Solve 2[x]=x+{x},w h r e[]a n d{} denote the greatest integer function and the fractional part function, respectively.

The value of int_(0)^(|x|){x} dx (where [*] and {*} denotes greatest integer and fraction part function respectively) is

f(x)=[x^(2)]-{x}^(2), where [.] and {.} denote the greatest integer function and the fractional part function , respectively , is

Solve : [x]^(2)=x+2{x}, where [.] and {.} denote the greatest integer and the fractional part functions, respectively.

Find the value of int_(-1)^1[x^2+{x}]dx ,w h e r e[dot]a n d{dot} denote the greatest function and fractional parts of x , respectively.

Find the solution of the equation [x] + {-x} = 2x, (where [*] and {*} represents greatest integer function and fractional part function respectively.

int_a^4{x}^([x])dx is equal to (where [.] and {.} represent greatest integer function and fractional part function respectively. (13)/(12) (b) 1/(12) (c) 5/(12) (d) (17)/(12)

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Single Correct Answer Type
  1. If [x] and {x} represent the integral and fractional parts of x respe...

    Text Solution

    |

  2. If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest inte...

    Text Solution

    |

  3. Let f(x)=([a]^2-5[a]+4)x^3-(6{a}^2-5{a}+1)x-(tanx)xsgnx be an even fun...

    Text Solution

    |

  4. The solution set for [x]{x}=1 (where {x} and [x] are respectively, fra...

    Text Solution

    |

  5. Let [x] represent the greatest integer less than or equal to x If [sqr...

    Text Solution

    |

  6. The number of roots of x^2-2=[sinx],w h e r e[dot] stands for the grea...

    Text Solution

    |

  7. The domain of f(x)=sin^(-1)[2x^2-3],w h e r e[dot] denotes the greates...

    Text Solution

    |

  8. The domain of f(x)=sqrt(2{x}^2-3{x}+1), where {.} denotes the fraction...

    Text Solution

    |

  9. The range of sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , where [.] denotes t...

    Text Solution

    |

  10. Let f(x)=e^({e^(|x|sgnx)})a n dg(x)=e^([e^(|x|sgnx)]),x in R , where ...

    Text Solution

    |

  11. Number of solutions of the equation, [y+[y]]=2cosx is: (where y=1//3)[...

    Text Solution

    |

  12. The function f(x)=sin(log(x+sqrt(1+x^2))) is (a) even function (b) odd...

    Text Solution

    |

  13. If f(x)=x^m n ,n in N , is an even function, then m is even integer ...

    Text Solution

    |

  14. If f(x)={x^2 sin((pi x)/2), |x|<1; x|x|, |x|>=1 then f(x) is

    Text Solution

    |

  15. If the graph of the function f(x)=(a^x-1)/(x^n(a^x+1)) is symmetrical ...

    Text Solution

    |

  16. If f: Rvec is an invertible function such that f(x)a n df^(-1)(x) are ...

    Text Solution

    |

  17. If f9x)=a x^7+b x^3+c x-5,a , b , c are real constants, and f(-7)=7, t...

    Text Solution

    |

  18. If g:[-2,2]vecR , where f(x)=x^3+tanx+[(x^2+1)/P] is an odd function, ...

    Text Solution

    |

  19. Let f:[-1, 10]->R ,w h e r ef(x)=sinx+[(x^2)/a], be an odd function. T...

    Text Solution

    |

  20. f(x)=(cosx)/([(2x)/pi]+1/2), where x is not an integral multiple of pi...

    Text Solution

    |