Home
Class 12
MATHS
The domain of f(x)=sin^(-1)[2x^2-3],w h ...

The domain of `f(x)=sin^(-1)[2x^2-3],w h e r e[dot]` denotes the greatest integer function, is `(-sqrt(3/2),sqrt(3/2))` `(-sqrt(3/2),-1)uu(-sqrt(5/2),sqrt(5/2))` `(-sqrt(5/2),sqrt(5/2))` `(-sqrt(5/2),-1)uu(1,sqrt(5/2))`

A

`(-sqrt((3)/(2)),sqrt((3)/(2)))`

B

`(-sqrt((3)/(2)),-1]cup (-sqrt((5)/(2)),sqrt((5)/(2)))`

C

`(-sqrt((5)/(2)),sqrt((5)/(2)))`

D

`(-sqrt((5)/(2)),-1]cup [1,sqrt((5)/(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \sin^{-1}[\lfloor 2x^2 - 3 \rfloor] \), where \( \lfloor \cdot \rfloor \) denotes the greatest integer function, we need to ensure that the argument of the sine inverse function lies within the range of \([-1, 1]\). ### Step-by-Step Solution: 1. **Set up the inequality for the greatest integer function:** \[ -1 \leq \lfloor 2x^2 - 3 \rfloor \leq 1 \] 2. **Break this down into two inequalities:** - From \( \lfloor 2x^2 - 3 \rfloor \geq -1 \): \[ 2x^2 - 3 \geq -1 \implies 2x^2 \geq 2 \implies x^2 \geq 1 \] - From \( \lfloor 2x^2 - 3 \rfloor \leq 1 \): \[ 2x^2 - 3 \leq 1 \implies 2x^2 \leq 4 \implies x^2 \leq 2 \] 3. **Combine the results:** \[ 1 \leq x^2 \leq 2 \] 4. **Take square roots:** - From \( x^2 \geq 1 \): \[ |x| \geq 1 \implies x \leq -1 \quad \text{or} \quad x \geq 1 \] - From \( x^2 \leq 2 \): \[ |x| \leq \sqrt{2} \implies -\sqrt{2} \leq x \leq \sqrt{2} \] 5. **Combine the intervals:** - The combined inequalities give us: \[ x \in (-\sqrt{2}, -1] \cup [1, \sqrt{2}) \] 6. **Final domain:** - The domain of \( f(x) \) is: \[ (-\sqrt{2}, -1] \cup [1, \sqrt{2}) \] ### Conclusion: Thus, the correct option for the domain of \( f(x) \) is: \[ (-\sqrt{5/2}, -1] \cup [1, \sqrt{5/2}) \]

To find the domain of the function \( f(x) = \sin^{-1}[\lfloor 2x^2 - 3 \rfloor] \), where \( \lfloor \cdot \rfloor \) denotes the greatest integer function, we need to ensure that the argument of the sine inverse function lies within the range of \([-1, 1]\). ### Step-by-Step Solution: 1. **Set up the inequality for the greatest integer function:** \[ -1 \leq \lfloor 2x^2 - 3 \rfloor \leq 1 \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.15|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Domain of f(x)=sin^(-1)[2-4x^2], where [.] denotes the greatest integer function, is: (a)[-(sqrt(3))/2,(sqrt(3))/2]-{0} (b) [-(sqrt(3))/2,(sqrt(3))/2] (c)[-(sqrt(3))/2,(sqrt(3))/2)-{0} (d) (-(sqrt(3))/2,(sqrt(3))/2)-0

Find sqrt(2+3sqrt(-5)) + sqrt(2-3sqrt(-5))

(1)/(2sqrt(5)-sqrt(3))-(2sqrt(5)+sqrt(3))/(2sqrt(5)+sqrt(3)) =

Simplify: (2sqrt(3)+sqrt(5))(2sqrt(3)-sqrt(5))

(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2))-(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2))+(1)/(sqrt(2)+1)-(1)/(sqrt(2)-1)

Solve sqrt(2x+1)+sqrt(3x+2)=sqrt(5x+3)

Simplify: 2/(sqrt(5)+\ sqrt(3))+1/(sqrt(3)+\ sqrt(2))-3/(sqrt(5)+\ sqrt(2))

Simplify each of the following expressions: (i) (3+sqrt(3))(2+sqrt(2)) (ii) (3+sqrt(3))(3-sqrt(3)) (iii) (sqrt(5)+sqrt(2))^2 (iv) (sqrt(5)-sqrt(2))(sqrt(5)+sqrt(2))

Simplify the following expressions: (i) (3+sqrt(3))\ (3-sqrt(3)) (ii) (sqrt(5)-\ sqrt(2)\ )(sqrt(5)+sqrt(2))

Show that : (1)/(3-2sqrt(2))- (1)/(2sqrt(2)-sqrt(7)) + (1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5 .

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Single Correct Answer Type
  1. Let [x] represent the greatest integer less than or equal to x If [sqr...

    Text Solution

    |

  2. The number of roots of x^2-2=[sinx],w h e r e[dot] stands for the grea...

    Text Solution

    |

  3. The domain of f(x)=sin^(-1)[2x^2-3],w h e r e[dot] denotes the greates...

    Text Solution

    |

  4. The domain of f(x)=sqrt(2{x}^2-3{x}+1), where {.} denotes the fraction...

    Text Solution

    |

  5. The range of sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , where [.] denotes t...

    Text Solution

    |

  6. Let f(x)=e^({e^(|x|sgnx)})a n dg(x)=e^([e^(|x|sgnx)]),x in R , where ...

    Text Solution

    |

  7. Number of solutions of the equation, [y+[y]]=2cosx is: (where y=1//3)[...

    Text Solution

    |

  8. The function f(x)=sin(log(x+sqrt(1+x^2))) is (a) even function (b) odd...

    Text Solution

    |

  9. If f(x)=x^m n ,n in N , is an even function, then m is even integer ...

    Text Solution

    |

  10. If f(x)={x^2 sin((pi x)/2), |x|<1; x|x|, |x|>=1 then f(x) is

    Text Solution

    |

  11. If the graph of the function f(x)=(a^x-1)/(x^n(a^x+1)) is symmetrical ...

    Text Solution

    |

  12. If f: Rvec is an invertible function such that f(x)a n df^(-1)(x) are ...

    Text Solution

    |

  13. If f9x)=a x^7+b x^3+c x-5,a , b , c are real constants, and f(-7)=7, t...

    Text Solution

    |

  14. If g:[-2,2]vecR , where f(x)=x^3+tanx+[(x^2+1)/P] is an odd function, ...

    Text Solution

    |

  15. Let f:[-1, 10]->R ,w h e r ef(x)=sinx+[(x^2)/a], be an odd function. T...

    Text Solution

    |

  16. f(x)=(cosx)/([(2x)/pi]+1/2), where x is not an integral multiple of pi...

    Text Solution

    |

  17. Let f(x)={(sinx+cosx",",0 lt x lt (pi)/(2)),(a",",x=pi//2),(tan^(2)x+"...

    Text Solution

    |

  18. The period of the function |sin^3(x/2)|+|cos^5(x/5)| is

    Text Solution

    |

  19. If f is periodic, g is polynomial function and f(g(x)) is periodic and...

    Text Solution

    |

  20. The period of function 2^({x}) +sin pi x+3^({x//2})+cos pi x (where {...

    Text Solution

    |