Home
Class 12
MATHS
The domain of f(x)=sqrt(2{x}^2-3{x}+1), ...

The domain of `f(x)=sqrt(2{x}^2-3{x}+1),` where {.} denotes the fractional part in `[-1,1]` is `[-1,1]-(1/(2,1))` `[-1,-1/2]uu[(0,1)/2]uu{1}` `[-(1,1)/2]` (d) `[-1/2,1]`

A

`[-1,1] ~((1)/(2),1)`

B

`[-1,-(1)/(2)] cup [0,(1)/(2)] cup {1}`

C

`[-1,(1)/(2)]`

D

`[-(1)/(2),1]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \sqrt{2\{x^2\} - 3\{x\} + 1} \), where \(\{x\}\) denotes the fractional part of \(x\), we need to ensure that the expression inside the square root is non-negative. ### Step-by-Step Solution: 1. **Understanding the Fractional Part**: The fractional part \(\{x\}\) is defined as: \[ \{x\} = x - \lfloor x \rfloor \] This means \(\{x\}\) is always in the interval \([0, 1)\). 2. **Setting Up the Inequality**: We need to solve the inequality: \[ 2\{x^2\} - 3\{x\} + 1 \geq 0 \] 3. **Finding the Expression for \(\{x^2\}\)**: Since \(x\) can be expressed as \(n + \{x\}\) where \(n\) is an integer, we have: \[ x^2 = (n + \{x\})^2 = n^2 + 2n\{x\} + \{x\}^2 \] Thus, the fractional part \(\{x^2\}\) can be expressed as: \[ \{x^2\} = x^2 - \lfloor x^2 \rfloor \] However, for our inequality, we will focus on the values of \(\{x\}\) and \(\{x^2\}\) in the interval \([0, 1)\). 4. **Analyzing the Quadratic**: The inequality can be rewritten as: \[ 2\{x^2\} - 3\{x\} + 1 \geq 0 \] This is a quadratic in terms of \(\{x\}\). We can find its roots by using the quadratic formula: \[ \{x\} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{3 \pm \sqrt{(-3)^2 - 4 \cdot 2 \cdot 1}}{2 \cdot 2} \] \[ = \frac{3 \pm \sqrt{9 - 8}}{4} = \frac{3 \pm 1}{4} \] This gives us the roots: \[ \{x\} = 1 \quad \text{and} \quad \{x\} = \frac{1}{2} \] 5. **Finding Intervals**: The quadratic opens upwards (since the coefficient of \(\{x\}^2\) is positive), so it will be non-negative outside the roots: - The intervals for \(\{x\}\) are: - \(\{x\} \leq \frac{1}{2}\) - \(\{x\} \geq 1\) (not possible since \(\{x\} < 1\)) 6. **Considering the Range of \(\{x\}\)**: Since \(\{x\}\) is always in \([0, 1)\), we focus only on: \[ 0 \leq \{x\} \leq \frac{1}{2} \] 7. **Finding Corresponding \(x\) Values**: The fractional part \(\{x\} = 0\) when \(x\) is an integer. The fractional part \(\{x\} = \frac{1}{2}\) occurs at \(x = n + \frac{1}{2}\) where \(n\) is an integer. Thus, the valid \(x\) values are: \[ x \in [n, n + \frac{1}{2}] \] for any integer \(n\). 8. **Final Domain**: Collecting all intervals, we find the domain of \(f(x)\) is: \[ [-1, -\frac{1}{2}] \cup [0, \frac{1}{2}] \cup [1] \] ### Conclusion: The domain of the function \( f(x) = \sqrt{2\{x^2\} - 3\{x\} + 1} \) is: \[ [-1, -\frac{1}{2}] \cup [0, \frac{1}{2}] \cup \{1\} \]

To find the domain of the function \( f(x) = \sqrt{2\{x^2\} - 3\{x\} + 1} \), where \(\{x\}\) denotes the fractional part of \(x\), we need to ensure that the expression inside the square root is non-negative. ### Step-by-Step Solution: 1. **Understanding the Fractional Part**: The fractional part \(\{x\}\) is defined as: \[ \{x\} = x - \lfloor x \rfloor ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.15|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

The domain of f(x)=sqrt(2{x}^2-3{x}+1), where {.} denotes the fractional part in [-1,1] is (a) [-1,1]-(1/(2),1) (b) [-1,-1/2]uu[(0,1)/2]uu{1} (c) [-1,1/2] (d) [-1/2,1]

The value of int_(0)^(1)({2x}-1)({3x}-1)dx , (where {} denotes fractional part opf x) is equal to :

let f(x)=(cos^-1(1-{x})sin^-1(1-{x}))/sqrt(2{x}(1-{x})) where {x} denotes the fractional part of x then

Discuss the continuity of f(x)={(x{x}+1 ,, 0lt=x<1),(2-{x} ,, 1lt=x<2):} where {x} denotes the fractional part function.

If f^(prime)(x)=|x|-{x}, where {x} denotes the fractional part of x , then f(x) is decreasing in (a) (-1/2,0) (b) (-1/2,2) (-1/2,2) (d) (1/2,oo)

The domain of the function f(x)=sqrt(cos^(- 1)((1-|x|)/2)) is

The domain of f(x)=sin^(-1)[2x^2-3],w h e r e[dot] denotes the greatest integer function, is (-sqrt(3/2),sqrt(3/2)) (-sqrt(3/2),-1)uu(-sqrt(5/2),sqrt(5/2)) (-sqrt(5/2),sqrt(5/2)) (-sqrt(5/2),-1)uu(1,sqrt(5/2))

The domain of f(x)=sin^(-1)[2x^2-3],w h e r e[dot] denotes the greatest integer function, is (-sqrt(3/2),sqrt(3/2)) (-sqrt(3/2),-1)uu(-sqrt(5/2),sqrt(5/2)) (-sqrt(5/2),sqrt(5/2)) (-sqrt(5/2),-1)uu(1,sqrt(5/2))

The domain of definition of f(x) = sqrt(sec^(-1){(1-|x|)/(2)}) is

The domain of the function f(x)=sqrt(1/((x|-1)cos^(- 1)(2x+1)tan3x)) is

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Single Correct Answer Type
  1. The number of roots of x^2-2=[sinx],w h e r e[dot] stands for the grea...

    Text Solution

    |

  2. The domain of f(x)=sin^(-1)[2x^2-3],w h e r e[dot] denotes the greates...

    Text Solution

    |

  3. The domain of f(x)=sqrt(2{x}^2-3{x}+1), where {.} denotes the fraction...

    Text Solution

    |

  4. The range of sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , where [.] denotes t...

    Text Solution

    |

  5. Let f(x)=e^({e^(|x|sgnx)})a n dg(x)=e^([e^(|x|sgnx)]),x in R , where ...

    Text Solution

    |

  6. Number of solutions of the equation, [y+[y]]=2cosx is: (where y=1//3)[...

    Text Solution

    |

  7. The function f(x)=sin(log(x+sqrt(1+x^2))) is (a) even function (b) odd...

    Text Solution

    |

  8. If f(x)=x^m n ,n in N , is an even function, then m is even integer ...

    Text Solution

    |

  9. If f(x)={x^2 sin((pi x)/2), |x|<1; x|x|, |x|>=1 then f(x) is

    Text Solution

    |

  10. If the graph of the function f(x)=(a^x-1)/(x^n(a^x+1)) is symmetrical ...

    Text Solution

    |

  11. If f: Rvec is an invertible function such that f(x)a n df^(-1)(x) are ...

    Text Solution

    |

  12. If f9x)=a x^7+b x^3+c x-5,a , b , c are real constants, and f(-7)=7, t...

    Text Solution

    |

  13. If g:[-2,2]vecR , where f(x)=x^3+tanx+[(x^2+1)/P] is an odd function, ...

    Text Solution

    |

  14. Let f:[-1, 10]->R ,w h e r ef(x)=sinx+[(x^2)/a], be an odd function. T...

    Text Solution

    |

  15. f(x)=(cosx)/([(2x)/pi]+1/2), where x is not an integral multiple of pi...

    Text Solution

    |

  16. Let f(x)={(sinx+cosx",",0 lt x lt (pi)/(2)),(a",",x=pi//2),(tan^(2)x+"...

    Text Solution

    |

  17. The period of the function |sin^3(x/2)|+|cos^5(x/5)| is

    Text Solution

    |

  18. If f is periodic, g is polynomial function and f(g(x)) is periodic and...

    Text Solution

    |

  19. The period of function 2^({x}) +sin pi x+3^({x//2})+cos pi x (where {...

    Text Solution

    |

  20. The period of the function f(x)= [6x+7]+cospix-6x , where [dot] denote...

    Text Solution

    |