Home
Class 12
MATHS
If f(x)={x^2 sin((pi x)/2), |x|<1; x|x|...

If `f(x)={x^2 sin((pi x)/2), |x|<1`; `x|x|, |x|>=1` then `f(x)` is

A

an even function

B

an odd function

C

a periodic function

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the function \( f(x) \) is odd, even, or neither, we will analyze the function defined piecewise as follows: \[ f(x) = \begin{cases} x^2 \sin\left(\frac{\pi x}{2}\right) & \text{if } |x| < 1 \\ x |x| & \text{if } |x| \geq 1 \end{cases} \] ### Step 1: Check for oddness in the first piece \( f(x) = x^2 \sin\left(\frac{\pi x}{2}\right) \) for \( |x| < 1 \) To check if \( f(x) \) is odd, we need to evaluate \( f(-x) \): \[ f(-x) = (-x)^2 \sin\left(\frac{\pi (-x)}{2}\right) = x^2 \sin\left(-\frac{\pi x}{2}\right) \] Using the property of sine, \( \sin(-\theta) = -\sin(\theta) \): \[ f(-x) = x^2 \left(-\sin\left(\frac{\pi x}{2}\right)\right) = -x^2 \sin\left(\frac{\pi x}{2}\right) = -f(x) \] ### Step 2: Conclusion for the first piece Since \( f(-x) = -f(x) \) for \( |x| < 1 \), this part of the function is odd. ### Step 3: Check for oddness in the second piece \( f(x) = x |x| \) for \( |x| \geq 1 \) Now, we evaluate \( f(-x) \) for this piece: \[ f(-x) = (-x)(|-x|) = (-x)(x) = -x^2 \] ### Step 4: Conclusion for the second piece For \( |x| \geq 1 \): \[ f(-x) = -x^2 = -f(x) \] This shows that this part of the function is also odd. ### Final Conclusion Since both pieces of the function \( f(x) \) are odd, we conclude that the entire function \( f(x) \) is odd. Thus, the final answer is: **\( f(x) \) is an odd function.** ---

To determine whether the function \( f(x) \) is odd, even, or neither, we will analyze the function defined piecewise as follows: \[ f(x) = \begin{cases} x^2 \sin\left(\frac{\pi x}{2}\right) & \text{if } |x| < 1 \\ x |x| & \text{if } |x| \geq 1 \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.15|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

If f(x)=sin^(-1) ((2x)/(1+x^2)) then f(x) is differentiable on

(dy)/(dx) ((1+ cos x)/(y)) =- sin x and f ((pi)/(2)) =-1, then f (0) is:

(dy)/(dx) ((1+ cos x)/(y)) =- sin x and f ((pi)/(2)) =-1, then f (0) is:

Consider f(x)=sin3x,0<=x<=(pi)/(2), then (a) f(x) is increasing for x in(0,(pi)/(6)) and decreasing for x in((pi)/(6),(pi)/(2)) (b) f(x) is increasing forx in(0,(pi)/(4)) and decreasing for x in((pi)/(4),(pi)/(2)) (c) f(x)

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=max{(1)/(2),sinx} , then f(x)=(1)/(2) is defined when x in

If f (x) = sqrt(cos ec ^(2) x - 2 sin x cos x - (1)/(tan ^(2) x )) x in ((7pi)/(4), 2pi ) then f' ((11 pi)/(6))=

If f (x) =2x, g (x) =3 sin x -x cos x, then for x in (0, (pi)/(2)):

If f(x)= sin (arctan x), g(x) = tan (arcsin x), and 0 le x lt (pi)/(2) , then f(g((pi)/(10)))=

If f(x) = x^11 + sin^3(35x) + 111x , then the value of f^(-1)(sin (pi/5)) +f^(-1)(sin (6pi/5)) + f^(-1)((sin pi/7)) + f^(-1)(sin (8pi/7)) is :

If f (x) =|sin x-|cos x ||, then f '((7pi)/(6))=

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Single Correct Answer Type
  1. The function f(x)=sin(log(x+sqrt(1+x^2))) is (a) even function (b) odd...

    Text Solution

    |

  2. If f(x)=x^m n ,n in N , is an even function, then m is even integer ...

    Text Solution

    |

  3. If f(x)={x^2 sin((pi x)/2), |x|<1; x|x|, |x|>=1 then f(x) is

    Text Solution

    |

  4. If the graph of the function f(x)=(a^x-1)/(x^n(a^x+1)) is symmetrical ...

    Text Solution

    |

  5. If f: Rvec is an invertible function such that f(x)a n df^(-1)(x) are ...

    Text Solution

    |

  6. If f9x)=a x^7+b x^3+c x-5,a , b , c are real constants, and f(-7)=7, t...

    Text Solution

    |

  7. If g:[-2,2]vecR , where f(x)=x^3+tanx+[(x^2+1)/P] is an odd function, ...

    Text Solution

    |

  8. Let f:[-1, 10]->R ,w h e r ef(x)=sinx+[(x^2)/a], be an odd function. T...

    Text Solution

    |

  9. f(x)=(cosx)/([(2x)/pi]+1/2), where x is not an integral multiple of pi...

    Text Solution

    |

  10. Let f(x)={(sinx+cosx",",0 lt x lt (pi)/(2)),(a",",x=pi//2),(tan^(2)x+"...

    Text Solution

    |

  11. The period of the function |sin^3(x/2)|+|cos^5(x/5)| is

    Text Solution

    |

  12. If f is periodic, g is polynomial function and f(g(x)) is periodic and...

    Text Solution

    |

  13. The period of function 2^({x}) +sin pi x+3^({x//2})+cos pi x (where {...

    Text Solution

    |

  14. The period of the function f(x)= [6x+7]+cospix-6x , where [dot] denote...

    Text Solution

    |

  15. If f(x) and g(x) are periodic functions with periods 7 and 11, respect...

    Text Solution

    |

  16. The period of the function f(x)=c^((sin^2x) +sin^2 (x+pi/3)+cosxcos(x+...

    Text Solution

    |

  17. Let f(x)={(0.1)^(3[x])}. (where [.] denotes greatest integer function ...

    Text Solution

    |

  18. If the period of (cos(sin(n x)))/(tan(x/n)),n in N ,i s6pi , then n= ...

    Text Solution

    |

  19. The period of f(x)=[x]+[2x]+[3x]+[4x]+[n x]-(n(n+1))/2x , where n in ...

    Text Solution

    |

  20. If f(x)=(-1)^([2/pi]),g(x)=|sinx|-|cosx|,a n dvarphi(x)=f(x)g(x) (wher...

    Text Solution

    |