Home
Class 12
MATHS
If g:[-2,2]vecR , where f(x)=x^3+tanx+[(...

If `g:[-2,2]vecR` , where `f(x)=x^3+tanx+[(x^2+1)/P]` is an odd function, then the value of parametric P, where [.] denotes the greatest integer function, is

A

`-5 lt P lt 5`

B

`P lt 5`

C

`P gt 5`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of the parameter \( P \) such that the function \[ f(x) = x^3 + \tan x + \left\lfloor \frac{x^2 + 1}{P} \right\rfloor \] is an odd function. An odd function satisfies the property that \( f(-x) = -f(x) \). ### Step-by-Step Solution: 1. **Understanding the Function**: The function is given as \( f(x) = x^3 + \tan x + \left\lfloor \frac{x^2 + 1}{P} \right\rfloor \). We need to check if this function is odd. 2. **Finding \( f(-x) \)**: We calculate \( f(-x) \): \[ f(-x) = (-x)^3 + \tan(-x) + \left\lfloor \frac{(-x)^2 + 1}{P} \right\rfloor \] Simplifying this, we have: \[ f(-x) = -x^3 - \tan x + \left\lfloor \frac{x^2 + 1}{P} \right\rfloor \] 3. **Setting Up the Odd Function Condition**: For \( f(x) \) to be odd, we need: \[ f(-x) = -f(x) \] Substituting the expressions we found: \[ -x^3 - \tan x + \left\lfloor \frac{x^2 + 1}{P} \right\rfloor = -\left( x^3 + \tan x + \left\lfloor \frac{x^2 + 1}{P} \right\rfloor \right) \] This simplifies to: \[ -x^3 - \tan x + \left\lfloor \frac{x^2 + 1}{P} \right\rfloor = -x^3 - \tan x - \left\lfloor \frac{x^2 + 1}{P} \right\rfloor \] 4. **Equating Terms**: From the above equation, we can see that: \[ \left\lfloor \frac{x^2 + 1}{P} \right\rfloor = -\left\lfloor \frac{x^2 + 1}{P} \right\rfloor \] This implies: \[ 2\left\lfloor \frac{x^2 + 1}{P} \right\rfloor = 0 \] Therefore: \[ \left\lfloor \frac{x^2 + 1}{P} \right\rfloor = 0 \] 5. **Analyzing the Floor Function**: The condition \( \left\lfloor \frac{x^2 + 1}{P} \right\rfloor = 0 \) means: \[ 0 \leq \frac{x^2 + 1}{P} < 1 \] This leads to: \[ 0 \leq x^2 + 1 < P \] 6. **Finding the Range of \( x^2 + 1 \)**: Since \( x \) is in the interval \([-2, 2]\), the minimum value of \( x^2 + 1 \) is \( 1 \) (when \( x = 0 \)) and the maximum value is \( 5 \) (when \( x = -2 \) or \( x = 2 \)). Thus: \[ 1 \leq x^2 + 1 \leq 5 \] 7. **Setting the Condition for \( P \)**: From the inequality \( x^2 + 1 < P \), we conclude: \[ 5 < P \] ### Conclusion: The value of the parameter \( P \) must be greater than \( 5 \).

To solve the problem, we need to determine the value of the parameter \( P \) such that the function \[ f(x) = x^3 + \tan x + \left\lfloor \frac{x^2 + 1}{P} \right\rfloor \] is an odd function. An odd function satisfies the property that \( f(-x) = -f(x) \). ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.15|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

If g:[-2,2]rarrR , where f(x)=x^3+tanx+[(x^2+1)/P] is an odd function, then the range of parametric P, where [.] denotes the greatest integer function, is

Lt_(xto2) [x] where [*] denotes the greatest integer function is equal to

The value of int_(0)^(2)[x^(2)-1]dx , where [x] denotes the greatest integer function, is given by:

lim_(xto0)[(-2x)/(tanx)] , where [.] denotes greatest integer function is

The range of the function y=[x^2]-[x]^2 x in [0,2] (where [] denotes the greatest integer function), is

The function f(x)=[x]^(2)+[-x^(2)] , where [.] denotes the greatest integer function, is

The function f(x)=1+x(sinx)[cosx], 0ltxlepi//2 , where [.] denotes greatest integer function

The function f(x)=1+x(sinx)[cosx], 0ltxlepi//2 , where [.] denotes greatest integer function

The value of int_(-1)^(3){|x-2|+[x]} dx , where [.] denotes the greatest integer function, is equal to

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Single Correct Answer Type
  1. If f: Rvec is an invertible function such that f(x)a n df^(-1)(x) are ...

    Text Solution

    |

  2. If f9x)=a x^7+b x^3+c x-5,a , b , c are real constants, and f(-7)=7, t...

    Text Solution

    |

  3. If g:[-2,2]vecR , where f(x)=x^3+tanx+[(x^2+1)/P] is an odd function, ...

    Text Solution

    |

  4. Let f:[-1, 10]->R ,w h e r ef(x)=sinx+[(x^2)/a], be an odd function. T...

    Text Solution

    |

  5. f(x)=(cosx)/([(2x)/pi]+1/2), where x is not an integral multiple of pi...

    Text Solution

    |

  6. Let f(x)={(sinx+cosx",",0 lt x lt (pi)/(2)),(a",",x=pi//2),(tan^(2)x+"...

    Text Solution

    |

  7. The period of the function |sin^3(x/2)|+|cos^5(x/5)| is

    Text Solution

    |

  8. If f is periodic, g is polynomial function and f(g(x)) is periodic and...

    Text Solution

    |

  9. The period of function 2^({x}) +sin pi x+3^({x//2})+cos pi x (where {...

    Text Solution

    |

  10. The period of the function f(x)= [6x+7]+cospix-6x , where [dot] denote...

    Text Solution

    |

  11. If f(x) and g(x) are periodic functions with periods 7 and 11, respect...

    Text Solution

    |

  12. The period of the function f(x)=c^((sin^2x) +sin^2 (x+pi/3)+cosxcos(x+...

    Text Solution

    |

  13. Let f(x)={(0.1)^(3[x])}. (where [.] denotes greatest integer function ...

    Text Solution

    |

  14. If the period of (cos(sin(n x)))/(tan(x/n)),n in N ,i s6pi , then n= ...

    Text Solution

    |

  15. The period of f(x)=[x]+[2x]+[3x]+[4x]+[n x]-(n(n+1))/2x , where n in ...

    Text Solution

    |

  16. If f(x)=(-1)^([2/pi]),g(x)=|sinx|-|cosx|,a n dvarphi(x)=f(x)g(x) (wher...

    Text Solution

    |

  17. If f(x)=1/x ,g(x)=1/(x^2), and h(x)=x^2, then (A) f(g(x))=x^2,x!=...

    Text Solution

    |

  18. If f(x)={(x^(2)",","for "x ge0),(x",","for "x lt 0):}, then fof(x) is...

    Text Solution

    |

  19. Let f(x)=sinxa n dg(x)=(log)e|x|dot If the ranges of the composition f...

    Text Solution

    |

  20. If f(x)={x ,xi sr a t ion a l1-x ,xi si r r a t ion a l ,t h e nf(f(x)...

    Text Solution

    |