Home
Class 12
MATHS
f(x)=(cosx)/([(2x)/pi]+1/2), where x is ...

`f(x)=(cosx)/([(2x)/pi]+1/2),` where `x` is not an integral multiple of `pi` and `[dot]` denotes the greatest integer function, is an odd function an even function neither odd nor even none of these

A

an odd function

B

an even function

C

neither odd nor even

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the function \( f(x) = \frac{\cos x}{\left[\frac{2x}{\pi}\right] + \frac{1}{2}} \) is an odd function, an even function, or neither, we will follow these steps: ### Step 1: Define the function We start with the given function: \[ f(x) = \frac{\cos x}{\left[\frac{2x}{\pi}\right] + \frac{1}{2}} \] where \( [\cdot] \) denotes the greatest integer function. ### Step 2: Find \( f(-x) \) To check if the function is odd or even, we need to find \( f(-x) \): \[ f(-x) = \frac{\cos(-x)}{\left[\frac{2(-x)}{\pi}\right] + \frac{1}{2}} \] Using the property of cosine, \( \cos(-x) = \cos x \), we can rewrite \( f(-x) \) as: \[ f(-x) = \frac{\cos x}{\left[-\frac{2x}{\pi}\right] + \frac{1}{2}} \] ### Step 3: Simplify the denominator Next, we need to simplify the denominator: \[ \left[-\frac{2x}{\pi}\right] + \frac{1}{2} \] The greatest integer function \( \left[-\frac{2x}{\pi}\right] \) can be expressed as: \[ \left[-\frac{2x}{\pi}\right] = -1 - \left[\frac{2x}{\pi}\right] \quad \text{(since } x \text{ is not an integral multiple of } \pi\text{)} \] Thus, we have: \[ f(-x) = \frac{\cos x}{-1 - \left[\frac{2x}{\pi}\right] + \frac{1}{2}} = \frac{\cos x}{-\left[\frac{2x}{\pi}\right] - \frac{1}{2}} \] ### Step 4: Compare \( f(-x) \) with \( -f(x) \) Now, we need to analyze \( -f(x) \): \[ -f(x) = -\frac{\cos x}{\left[\frac{2x}{\pi}\right] + \frac{1}{2}} = \frac{-\cos x}{\left[\frac{2x}{\pi}\right] + \frac{1}{2}} \] We want to see if \( f(-x) = -f(x) \): \[ f(-x) = \frac{\cos x}{-\left[\frac{2x}{\pi}\right] - \frac{1}{2}} = \frac{-\cos x}{\left[\frac{2x}{\pi}\right] + \frac{1}{2}} \] This shows that: \[ f(-x) = -f(x) \] Thus, \( f(x) \) is an odd function. ### Conclusion The function \( f(x) \) is an odd function. ---

To determine whether the function \( f(x) = \frac{\cos x}{\left[\frac{2x}{\pi}\right] + \frac{1}{2}} \) is an odd function, an even function, or neither, we will follow these steps: ### Step 1: Define the function We start with the given function: \[ f(x) = \frac{\cos x}{\left[\frac{2x}{\pi}\right] + \frac{1}{2}} \] where \( [\cdot] \) denotes the greatest integer function. ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|32 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 1.15|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

f(x)= cosx/([2x/pi]+1/2) where x is not an integral multiple of pi and [ . ] denotes the greatest integer function, is (a)an odd function (b)an even function (c)neither odd nor even (d)none of these

Which of the following functions is neither odd nor even?

The period of the function f(x)= [6x+7]+cospix-6x , where [dot] denotes the greatest integer function is:

If the function f(x)=[3.5+bsin x] (where [.] denotes the greatest integer function) is an even function, the complete set of values of b is

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

Evaluate: int_(-pi/2)^(2pi)[cot^(-1)x]dx , where [dot] denotes the greatest integer function

The range of the function f(x) =[sinx+cosx] (where [x] denotes the greatest integer function) is f(x) in :

The function, f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

The function f(x)=[x]^(2)+[-x^(2)] , where [.] denotes the greatest integer function, is

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is discontinuous

CENGAGE ENGLISH-RELATIONS AND FUNCTIONS-Single Correct Answer Type
  1. If g:[-2,2]vecR , where f(x)=x^3+tanx+[(x^2+1)/P] is an odd function, ...

    Text Solution

    |

  2. Let f:[-1, 10]->R ,w h e r ef(x)=sinx+[(x^2)/a], be an odd function. T...

    Text Solution

    |

  3. f(x)=(cosx)/([(2x)/pi]+1/2), where x is not an integral multiple of pi...

    Text Solution

    |

  4. Let f(x)={(sinx+cosx",",0 lt x lt (pi)/(2)),(a",",x=pi//2),(tan^(2)x+"...

    Text Solution

    |

  5. The period of the function |sin^3(x/2)|+|cos^5(x/5)| is

    Text Solution

    |

  6. If f is periodic, g is polynomial function and f(g(x)) is periodic and...

    Text Solution

    |

  7. The period of function 2^({x}) +sin pi x+3^({x//2})+cos pi x (where {...

    Text Solution

    |

  8. The period of the function f(x)= [6x+7]+cospix-6x , where [dot] denote...

    Text Solution

    |

  9. If f(x) and g(x) are periodic functions with periods 7 and 11, respect...

    Text Solution

    |

  10. The period of the function f(x)=c^((sin^2x) +sin^2 (x+pi/3)+cosxcos(x+...

    Text Solution

    |

  11. Let f(x)={(0.1)^(3[x])}. (where [.] denotes greatest integer function ...

    Text Solution

    |

  12. If the period of (cos(sin(n x)))/(tan(x/n)),n in N ,i s6pi , then n= ...

    Text Solution

    |

  13. The period of f(x)=[x]+[2x]+[3x]+[4x]+[n x]-(n(n+1))/2x , where n in ...

    Text Solution

    |

  14. If f(x)=(-1)^([2/pi]),g(x)=|sinx|-|cosx|,a n dvarphi(x)=f(x)g(x) (wher...

    Text Solution

    |

  15. If f(x)=1/x ,g(x)=1/(x^2), and h(x)=x^2, then (A) f(g(x))=x^2,x!=...

    Text Solution

    |

  16. If f(x)={(x^(2)",","for "x ge0),(x",","for "x lt 0):}, then fof(x) is...

    Text Solution

    |

  17. Let f(x)=sinxa n dg(x)=(log)e|x|dot If the ranges of the composition f...

    Text Solution

    |

  18. If f(x)={x ,xi sr a t ion a l1-x ,xi si r r a t ion a l ,t h e nf(f(x)...

    Text Solution

    |

  19. If f and g are one-one functions, then a. f+g is one one b. fg is one...

    Text Solution

    |

  20. The domain of f(x) is (0,1)dot Then the domain of (f(e^x)+f(1n|x|) is ...

    Text Solution

    |